• 제목/요약/키워드: ligand-gated ion channels

검색결과 15건 처리시간 0.015초

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.

The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells

  • Kwon, Tae Hoon;Jung, Hyunwoo;Cho, Eun Jeong;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.616-623
    • /
    • 2015
  • P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of $MLC_{20}$ was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and $10{\mu}M$ concentration. Contraction of dispersed cells treated with $10{\mu}M$ ATP was inhibited by nifedipine. However, contraction induced by $0.1{\mu}M$ ATP, $0.1{\mu}M$ UTP and $10{\mu}M$ UTP was decreased by U73122, chelerythrine, ML-9, PTX and $GDP{\beta}S$. Contraction induced by $0.1{\mu}M$ ATP and UTP was inhibited by $G{\alpha}i_3$ or $G{\alpha}q$ antibodies and by $PLC{\beta}_1$ or $PLC{\beta}_3$ antibodies. Phosphorylated $MLC_{20}$ was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to $G{\alpha}i_3$ and $G{\alpha}q$ proteins, which activate $PLC{\beta}_1$ and $PLC{\beta}_3$. Subsequently, increased intracellular $Ca^{2+}$ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased $pMLC_{20}$ generated esophageal contraction.

Synthesis and SAR of N-Chlorophenyl Substituted Piperrazinylethyl-aminomethylpyrazoles as 5-HT3A Inhibitors

  • Lee, Byung-Hwan;Choi, In-Sung;Rhim, Hye-Whon;Choi, Kyung-Il;Nah, Seung-Yeol;Nam, Ghil-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2707-2712
    • /
    • 2009
  • 5-$HT_{3}$ receptor;5-$HT_{3A}$ receptor channel activity;Novel 5-$HT_{3}$ receptor channel current blockers;Chlorophenyl substituted piperazinylethylaminomethylpyrazoles; The 5-$HT_{3A}$ receptors are one of ligand-gated ion channels and are known to be involved in visceral pain, anxiety, or anticancer agent-induced nausea and vomiting. In present study, we designed novel skeletons based on the developed 5-$HT_{3}$ receptor antagonists and evaluated their effects on 5-$HT_{3A}$ receptor channel currents ($I_{5-HT}$) of a series of pyrazole derivatives having N-chlorophenylpiperazine functionality (6-9). We found that most of N-p-chlorophenyl substituted piperazinyl-pyrazole derivatives (7b, 7c, 7e and 7h) exhibited the high potency for the inhibition of $I_{5-HT}$, whereas the compound without chloride (6) or with m-chlorophenyl group (a serious of 8 and 9) showed the low potency. These result indicate that p-chlorophenyl group is might play an important role for increasing the inhibitory potency on $I_{5-HT}$.

Quercetin Inhibits the 5-Hydroxytryptamine Type 3 Receptor-mediated Ion Current by Interacting with Pre-Transmembrane Domain I

  • Lee, Byung-Hwan;Jung, Sang-Min;Lee, Jun-Ho;Kim, Jong-Hoon;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Chang, Choon-Gon;Kim, Hyung-Chun;Han, YeSun;Paik, Hyun-Dong;Kim, Yangmee;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.69-73
    • /
    • 2005
  • The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 ($5-HT_{3A}$) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The $5-HT_{3A}$ receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with $5-HT_{3A}$ receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current ($I_{5-HT}$) with an $IC_{50}$ of $64.7{\pm}2.2{\mu}M$. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the $5-HT_{3A}$ receptor.

Inhibitory Effects of Quercetin on Muscle-type of Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Lee, Soo-Han;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권4호
    • /
    • pp.195-201
    • /
    • 2011
  • The flavonoid quercetin is a low molecular weight compound generally found in apple, gingko, tomato, onion and other red-colored fruits and vegetables. Like other flavonoids, quercetin has diverse pharmacological actions. However, relatively little is known about the influence of quercetin effects in the regulation of ligand-gated ion channels. Previously, we reported that quercetin regulates subsets of nicotinic acetylcholine receptors such as ${\alpha}3{\beta}4$, ${\alpha}7$ and ${\alpha}9{\alpha}10$. Presently, we investigated the effects of quercetin on muscle-type of nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding human fetal or adult muscle-type of nicotinic acetylcholine receptor subunits. Acetylcholine treatment elicited an inward peak current ($I_{ACh}$) in oocytes expressing both muscle-type of nicotinic acetylcholine receptors and co-treatment of quercetin with acetylcholine inhibited $I_{ACh}$. Pre-treatment of quercetin further inhibited $I_{ACh}$ in oocytes expressing adult and fetal muscle-type nicotinic acetylcholine receptors. The inhibition of $I_{ACh}$ by quercetin was reversible and concentration-dependent. The $IC_{50}$ of quercetin was $18.9{\pm}1.2{\mu}M$ in oocytes expressing adult muscle-type nicotinic acetylcholine receptor. The inhibition of $I_{ACh}$ by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate human muscle-type nicotinic acetylcholine receptor channel activity and that quercetin-mediated regulation of muscle-type nicotinic acetylcholine receptor might be coupled to regulation of neuromuscular junction activity.