• Title/Summary/Keyword: ligament pit

Search Result 3, Processing Time 0.02 seconds

Early Stages in Morphogenesis of the Shell of Crenella decussata (Bivalvia: Mytilidae)

  • Kolotukhina, N.K.;Kulikova, V.A.;Evseev, G.A.
    • The Korean Journal of Malacology
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2011
  • This study examines the morphological features of larval and postlarval shells of the paedomorphic bivalve Crenella decussata Montagu, 1808 from the Sea of Japan. During the early morphogenesis of the shell of C. decussata the following characteristics appear: prodissoconch I -the anterior and posterior provincular teeth, a broad primary ligament pit located on the chondrophore; nepioconch - the anterior and posterior juvenile teeth,primary lateral teeth, fine commarginal and radial sculpture. Larvae of C. decussata distinctly differ from other mytilid larvae by a D-shaped shell, absence of umbo, astraight hinge margin, and homogeneous fine-grained sculpture without co-marginal lines of growth. These shell characters indicate lecithotrophic development of this species. Some morphostructures are revealed which might be used in crenellin taxonomy.

Human Periodontal Ligament Fibroblasts Support the Osteoclastogenesis of RAW264.7 Cells (치주인대섬유아세포가 파골세포분화에 미치는 영향)

  • Lee, Ho;Jeon, Yong-Seon;Choi, Seoung-Hwan;Kim, Hyung-Seop;Oh, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.733-744
    • /
    • 2002
  • The fibroblasts are the principal cells in the periodontal ligament of peridontium. As the periodontal ligament fibroblasts (PDLF) show similar phenotype with osteoblasts, the PDLF are thought to play an important role in alveolar bone remodeling. Cell-to-cell contacted signaling is crucial for osteoclast formation. Recently it has been reported that PDLJ enhance the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The aims of this study were to $clarify\;^{1)}$ the mechanism of PDLF-induced osteoclastogenesis $and\;^{2)}$ whether we can use preosteoclast cell line instead of primary hematopoietic preosteoclast cells for studying the mechanism of PDLF-induced osteoclastogenesis. Osteoclastic differentiation of mouse macrophage cell line RAW264.7 was compared with that of mouse bone marrow-derived M-CSF dependent cell (MDBM), a well-known hematopoietic preosteoclast model, by examining, 1) osteoclast-specific gene expression such as calcitonin receptor, M-CSF receptor (c-fms), cathepsin K, receptoractivator nuclear factor kappa B (RANK) ,2) generation of TRAP(+) multinucleated cells (MNCs), and 3) generation of resorption pit on the $OAAS^{TM}$ plate. RAW264.7 cultured in the medium containing of soluble osteoclast differentiation Factor (sODF) showed similar phenotype with MDBM-derived osteoclasts, those are mRNA expression pattern of osteoclast-specific genes, TRAP(+) MNCs generation, and bone resorbing abivity. Formation of resorption pits by osteoclastic MNCs differentiated from sODF-treated RAW264.7, was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for ODF, to the sODF-containing culture me야um. The effects of PDLF on differentiation of RAW264.7 into the TRAP(+) multinucleated osteoclast-like cells were examined using coculture system. PDLF were fxed with paraformaldehyde, followed by coculture with RAW264.7, which induced formation of TRAP(+) MNCs in the absence of additional treatment of sODF. When compared with untreated and fixed PDLF (fPDLF), IL-1 ${\beta}$-treated, or lipopolysaccha-ride-treated and then fixed PDLF showed two-folld increase in the supporting activity of osteoclastogenesis from RAW264.7 coculture system. There were no TRAP(+) MNCs formation in coculture system of RAW264.7 with PDLF of no fixation. These findigs suggested that we can replace the primary hematopoietic preosteoclasts for RAW264. 7 cell line for studying the mechanism of PDLF-induced osteoclastogenesis, and we hypothesize that PDLF control osteoclastogenesis through ODF expression which might be enhanced by inflammatory signals.

Role of interleukin-6 in orthodontically induced inflammatory root resorption in humans

  • Kunii, Ryuichi;Yamaguchi, Masaru;Tanimoto, Yasuhiro;Asano, Masaki;Yamada, Kunihiko;Goseki, Takemi;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2013
  • Objective: To determine the interleukin (IL)-6 levels in gingival crevicular fluid (GCF) of patients with severe root resorption after orthodontic treatment and investigate the effects of different static compressive forces (CFs) on IL-6 production by human periodontal ligament (hPDL) cells and the influence of IL-6 on osteoclastic activation from human osteoclastic precursor (hOCP) cells in vitro. Methods: IL-6 levels in GCF samples collected from 20 patients (15 and 5 subjects without and with radiographic evidence of severe root resorption, respectively) who had undergone orthodontic treatment were measured by ELISA. The levels of IL-6 mRNA in hPDL cells and IL-6 protein in conditioned medium after the application of different uniform CFs (0, 1.0, 2.0, or 4.0 $g/cm^2$ for up to 72 h) were measured by real-time PCR and ELISA, respectively. Finally, the influence of IL-6 on mature osteoclasts was investigated by using hOCP cells on dentin slices in a pit-formation assay. Results: Clinically, the IL-6 levels were significantly higher in the resorption group than in the control group. In vitro, IL-6 mRNA expression significantly increased with increasing CF. IL-6 protein secretion also increased in a time- and magnitude-dependent manner. Resorbed areas on dentin slices were significantly greater in the recombinant human IL-6-treated group and group cultured in hPDL cell-conditioned medium with CF application (4.0 $g/cm^2$) than in the group cultured in hPDL cell-conditioned medium without CF application. Conclusions: IL-6 may play an important role in inducing or facilitating orthodontically induced inflammatory root resorption.