• Title/Summary/Keyword: ligament healing

Search Result 106, Processing Time 0.029 seconds

Effects of chitosan on the characteristics of periodontal ligament, calvaria cells and gingival fibroblasts (Chitosan이 치주인대, 두개관 및 치은섬유아세포의 성상에 미치는 영향)

  • Kim, Sun-Hee;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.17-35
    • /
    • 1998
  • Chitosan, with a chemical structure similar to hyaluronic acid, has been implicated as a wound healing agent. The purpose of this research was to evaluate the effects of chitosan on the characteristics of periodontal ligament cells, calvaria cells and gingival fibroblasts and to define the effects of chitosan on bone formation in vitro. In control group, the cells were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% Fetal bovine serum, 100unit/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, chitosan($40{\mu}g/ml$) is added into the above culture condition. And then each group was characterized by examining the cell proliferation at 1,3,5,7,9,12,15 day, the amount of total protein synthesis, alkaline phosphatase activity at 3, 7 day and the ability to produce mineralized nodules of rat calvaria cell at 11 day. The results were as follows : 1. At early time both periodontal ligament cells and calvaria cells in chitosan-treated group proliferated more rapidly than in non-treated control group, but chitosan-treated group of periodontal ligament cells at 9 days and calvaria cells at 12days showed lower growth rate than control group. Gingival fibroblast in chitosan-treated group had lower growth rate than in control group but the difference was not statistically significant (P< 0.01).2. Both periodontal ligament cells and calvaria cells in chitosan-treated group showed much protein synthesis than in control group at 3 days, but showed fewer than in control group at 7 days. Amount of total protein synthesis of gingival fibroblast didn't have statistically significant difference among the two groups(P< 0.01). 3. At 3 and 7 days, alkaline phosphatase activity of periodontal ligament cells and calvaria cells was increased in chitosan-treated group, but at 7 days there was not statistically significant difference among the two groups of calvaria cells (P< 0.01). Alkaline phosphatase activity of gingival fibroblast didn't have statistically significant difference among the two groups(P<0.01). 4. Mineralized nodules in chitosan-treated group of rat calvaria cells were more than in control group. In summery, chitosan had an effect on the proliferation, protein systhesis, alkaline phosphatase activity of periodontal ligament cells and calvaria cells, and facilitated the formation of bone. It is thought that these effects can be used clinically in periodontal regeneration therapy.

  • PDF

Guided bone regenerative effect of chitosan and chitosan-cellulose membranes (Chitosan과 chitosan-cellulose를 이용한 차폐막의 골조직 재생유도능력에 관한 연구)

  • Kye, Seung-Beom;Son, Seong-Heui;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.611-632
    • /
    • 1998
  • Chitosan has been known as a wound healing agent. The purpose of this study was to evaluate the biocompatibility and guided bone regenerative effect of chitosan and chitosan-cellulose membranes. The effects of chitosan and chitosan-cellulose membranes on the growth and survival of human periodontal ligament cells were examined by rapid colorimetric MTT(tetrazolium) assay, and the tissue response and resorption pattern were observed by implanting the membranes into the subcutaneous tissue of the back of rats for 6 weeks. To evaluate the guided bone regenerative potential of membranes, the amount of newly formed bone in the rat calvarial defects(8mm in diameter) was measured by histomorphometry and radiomorphometry 1,2 and 4 weeks after implantation of membranes. Chitosan and chitosan-cellulose membranes showed no adverse effect on the growth and survival of human periodontal ligament cells. When membranes were subcutaneously implanted, inflammatory reaction was observed at 1 week and which gradually subsided 2weeks after implantation. Membranes remained intact throughout the experimental period of 6 weeks. Radiomorphometric analysis of the craniotomy sites revealed that chitosan and chitosan-cellulose membrane implanted sites showed increased radiopacity over control. Statistically significant differences with control were found in chitosan-cellulose membrane implanted group at 2 and 4 weeks, and chitosan membrane implanted group at 4 weeks(P<0.05). Histomorphometric data indicated a pattern of osseous healing similar to radiomorphometric analysis. There was a statistically significant difference between control and chitosan-cellulose membrane implanted group at 4 weeks(P<0.05). These results implicate that chitosan and chitosan-cellulose membrane might be useful for guided bone regeneration.

  • PDF

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

A STUDY OF THE EFFECT OF ZIZYPHUS FRUCTUS EXTRACTS ON MORPHOLOGY & CHEMOTAXIS OF GINGIVAL FIBROBLAST & PERIODONTAL LIGAMENT CELLS (치은섬유아세포와 치은인대세포의 형태와 화학주성에 미치는 대조추출물의 효과에 관한 연구)

  • Yang, Chang-Ho;Ryu, In-Chul;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.279-289
    • /
    • 1995
  • The most important object of periodontal treatment is the perfect regeneration of destructed periodontal tissue. The healing of periodontal lesion is affected by several cells & factors, which result in formation of long juntional epithelium, root resorption, bony ankylosis or connective tissue attachment. And ideal healing is enhanced by epithilial exclusion or periodontal ligament cell activation. In this investigation, I studied the effect of Zizyphus Fructus extract which enhances biologic activity& collagen synthesis, on the chemotaxis & cell nature. The cells were obtained from interdental area & middle third area of the freshly extracted teeth for the orthodontic purpose. And they were fully incubated in${\alpha}-MEM$ solution containing $100{\mu]g/ml$ penicillin & $100{\mu]g/ml$ streptomycin followed by 6 generation incubation. The test cells were collected by trypsin-EDTA & centrifuge in the fully incubated cells, counted by Hernacyotmeter, incbated $5{\times}10^5/ml$ cells for 24 hours, re-incubated 24 hours in media containing natural extract and photographed. The cells were incubated for 4 hours in 48 well microchemotaxis chamber bisecting upper & lower chamber by 8ug/m pore polycarbonate membrane coating 5mg/ml gelatin solution. The migrated cells in microscope were counted, which meaned cell chemotaxis activity. The study had shown that the morphology of cell was spindle-shaped as the control group, and the subextract test groups were not significantly different. In gingival fibroblasts, the chemotaxis effect of PDGF was statistically significant compared to control group. The Zizyphus Fructus extract was more or less enhanced chemotaxis effect and in $1{\mu}g/ml$ concentration the chemotaxis effect was slightly elevated compared with $10{\mu}g/ml$ concentration. But, among the subextracts, it was not significantly defferent. In PDL cells, the chemotaxis effect of PDGF in statistically significant, and the zizyphus Fructus extract had shown the enhanced effect. The effect was slightly higher in $1{\mu}g/ml$ concentration than 10g/ml concentration,and no significance among the subextracts.

  • PDF

Periodontal healing using a collagen matrix with periodontal ligament progenitor cells in a dehiscence defect model in beagle dogs

  • Yoo, Seung-Yoon;Lee, Jung-Seok;Cha, Jae-Kook;Kim, Seul-Ki;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.215-227
    • /
    • 2019
  • Purpose: To histologically characterize periodontal healing at 8 weeks in surgically created dehiscence defects in beagle dogs that received a collagen matrix with periodontal ligament (PDL) progenitor cells. Methods: The bilateral maxillary premolars and first molars in 6 animals were used. Standardized experimental dehiscence defects were made on the buccal side of 3 premolars, and primary culturing of PDL progenitor cells was performed on the molars. Collagen matrix was used as a scaffold and a delivery system for PDL progenitor cells. The experimental sites were grafted with collagen matrix (COL), PDL progenitor cells with collagen matrix (COL/CELL), or left without any material (CTL). Histologic and histomorphometric analyses were performed after 8 weeks. Results: The defect height from the cementoenamel junction to the most apical point of cementum removal did not significantly differ across the CTL, COL, and COL/CELL groups, at $4.57{\pm}0.28$, $4.56{\pm}0.41$, and $4.64{\pm}0.27mm$ (mean ${\pm}$ standard deviation), respectively; the corresponding values for epithelial adhesion were $1.41{\pm}0.51$, $0.85{\pm}0.29$, and $0.30{\pm}0.41mm$ (P<0.05), the heights of new bone regeneration were $1.32{\pm}0.44$, $1.65{\pm}0.52$, and $1.93{\pm}0.61mm$ (P<0.05), and the cementum regeneration values were $1.15{\pm}0.42$, $1.81{\pm}0.46$, and $2.57{\pm}0.56mm$ (P<0.05). There was significantly more new bone formation in the COL/CELL group than in the CTL group, and new cementum length was also significantly higher in the COL/CELL group. However, there were no significant differences in the width of new cementum among the groups. Conclusions: PDL progenitor cells carried by a synthetic collagen matrix may enhance periodontal regeneration, including cementum and new bone formation.

Graft Considerations for Successful Anterior Cruciate Ligament Reconstruction (성공적인 전방십자인대 재건술을 위한 적절한 이식건의 선택)

  • Kyung, Hee-Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • Several factors need to be considered for a successful anterior cruciate ligament (ACL) reconstruction, such as preoperative planning, operation technique, and postoperative rehabilitation. Graft choice, fixation, preparation method, maturation, incorporation to host bone, and graft tension should also be considered to achieve a good outcome after an ACL reconstruction. Factors to consider when selecting a graft are the graft strength, graft fixation, fixation site healing, and donor site morbidity, as well as the effects of initial strength, size, surface area, and origin of the graft on its potential for weakening during healing. There are two types of graft for an ACL reconstruction, autograft or allograft. Several autografts have been introduced, including the bone-patellar tendon-bone, hamstring tendon, and quadriceps tendon-bone. On the other hand, each has its advantages and disadvantages. The recent increased use of allografts for an ACL reconstruction is the lack of donor site morbidity, decreased surgical time, diminished postoperative pain, and good availability of source. Despite this, there are no reports suggesting that an allograft may have a better long-term outcome than an autograft. Allografts have inherent disadvantages, including a longer and less complete course of incorporation, remodeling, biomechanically inferiority to autograft, the potential risk of an immunogenic reaction and disease transmission. Higher long-term failure rates and poorer graft maturation scores were reported for allografts compared to autografts. An autograft in an ACL reconstruction should remain the gold standard, although the allograft is a reasonable alternative. If adequate length and diameter of autograft can be obtained for an ACL reconstruction, an autograft with adequate graft fixation and postoperative rehabilitation should be chosen instead of an allograft to achieve better results.

THE EFFECTS OF COLLAGEN MEMBRANE AND ATUOGENOUS CONNECTIVE TISSUE GRAFT ON THE INHIBITION OF EPITHELIAL MIGRATION. (이식된 결합조직 교원막이 초기 접합상피의 근단전이 억제에 미치는 영향에 관한 연구)

  • Lee, Kyu-Seop;Lee, Jae-Hyung;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.67-76
    • /
    • 1993
  • After periodontal surgery, the potential healing responses were occurred by interaction among junctional epithelium, gingival connective tissue, alveolar bone and periodontal ligament. The only cell that created periodontal regeneration was derived from periodontal ligament. The aim of the study was to evaluate the regenerative effects of the collagen membrane($collacote^{\circ}C$) and autogenous connective tissure graft with periosteum. Experimental periodontitis were created in furcation area of 4 adult dogs with bone removal and gutta percha packing. After 6 weeks later, the gutta percha was removed and experiment was performed divided by 3 groups. 1) Flap operation(control group). 2) Flap operation with collage membrane(Experimental group I). 3) Flap operation with autogenous connective tissue graft with periosteum (Experimental group II). After dogs were sacrificed after two and three weeks, specimens were prepared and stained with hematoxylin-eosin and masson-trichrome stain for light microscopic study. The results were as follows : 1. In all gruoups, connective tissue compartments were increased from two to three weeks especially in experimental group I. 2. Collagen membrane and connective tissue were increased collagen deposits of periodontal ligament. Therefore collagen fiber attached to tooth surface was seen. 3. In al experimental groups, newly forming alveolar bone was seen. 4. Collagen membrane and connective tissue were which prevented proliferation of epithelium, aided connective tissue new attachment and influenced periodontal regeneration.

  • PDF

THE EFFECT OF A CHITOSAN COATING OF DENTAL IMPLANT ON THE SHOCK ABSORPTION UNDER IMPACT TEST (키토산으로 표면처리된 인공치아의 충격전달에 관한 연구)

  • Kim, Ki-Hong;Lee, Yong-Chan;Cho, Byoung-Ouck;Choi, Kui-Won;Kwon, Ick-Chan;Bae, Tae-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • With the object of providing a temporary artificial periodonal ligament-like membrane around the dental implant, 10 Branemark type implants were coated with commercially available chitosan(Fluka Co., Buchs, Switzerland) which has a molecular weight of 70,000 and 80% deacetylation degree. Once this bioactive hydrophillic polymer(chitosan) contacts with blood or wound fluids, it becomes swollen and penetrates into the adjacent cancellous bone. Thus the interface between implant and surrounding bone is completely filled with chitosan. This tight junction in early healing phase enhances primary stability. The chitosan coated dental implants were implanted into the fresh patella bones from porcine knees, since the thickness of cortical bone is relatively even and their cancellous structure is homogenous. To test the shock absorbing effect, 1mm delta-rogette strain gage was installed behind the implant. The results showed 1. The principal strain peak value directed to the impact of coated implant was 0.064 0.018(p<0.05) and that of uncoated implant was 0.095(0.032 p<0.05). 2. The peak time delay of coated implant was 0.056sec(0.011 p<0.05) and that of uncoated implant was 0.024sec(0.009 p<0.05). It can be reasoned from this results that the chitosan coating has a shock absorbing effect comparable with a temporary artificial periodontal ligament.

  • PDF

Intra-articular replacement of a ruptured cranial cruciate ligament using the Mini-TightRope in the dog: a preliminary study

  • Pinna, Stefania;Lanzi, Francesco;Tassani, Chiara;Mian, Giacomo
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.53.1-53.12
    • /
    • 2020
  • Background: The TightRope System is a device developed to provide extracapsular stabilization of the cranial cruciate ligament (CCL) rupture in canine stifles. I was then also employed for the extra-articular treatment of shoulder instability and for the intra-articular treatment of hip luxation in dogs and cats. Objectives: To evaluate the feasibility of the Mini-TightRope (mTR) System for the intraarticular treatment of CCL rupture in small breed dogs. Methods: A cadaveric canine model was used to record the steps of the surgical procedure. Five client owned dogs weighing from 8 to 10 kg and from 2 to 12 years of age were enrolled in the prospective study in which the mTR device was implanted in the stifle joint to replace the ruptured CCL. The dogs were graded using the Bologna Healing Stifle Injury Index (BHSII) and radiographic osteoarthritis (OA) scores. Results: The outcomes obtained at the time of the surgery (T0) and for the following 12 months (T12) showed an improvement in the functional parameters (BHSII from a median of 74.3 [range, 58.1-82.4] at T0 to 95.6 [range, 94.1-99.3] at T12]). The OA did not change in 3 dogs and increased by only 1 point in 2 dogs. Conclusions: In this preliminary study, the mTR was a successful and repeatable intraarticular surgical procedure for all dogs. Additional studies related to the clinical application of the technique in medium-large dogs should be encouraged.

EFFECTS OF BONE MORPHOGENETIC PROTEIN ON THE HEALING OF PERIODONTIUM AFTER TOOTH REPLANTATION OF THE RAT (치아재식시 골형태형성단백이 치주조직 치유에 미치는 영향)

  • Kim, Ji-Sook;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.501-521
    • /
    • 2002
  • The purpose of this study is to evaluate the influences of the bone morphogenetic protein (BMP) on the healing of periodontal ligament and alveolar bone after replantation of tooth, and to examine the possibility of its clinical application. 45 Sprague Dawley rats weighted about 100 gram were divided into 3 experimental groups by different dose of BMP. All the upper right and left 1st molar were extracted after 5 days feeding of 0.4% ${\beta}$-aminopropionitrile, and right molar were used as experimental group and left molar were used as control group. The root surface of experimental molar were treated with 25,50 and l00ng/ml of human recombinant Bone morphogenetic protein-4 (rh-BMP-4) with micropipet, and 1M Sodium hypochloride were used on control root surface. All the experimental animals were sacrificed as 1, 2, 4, 7 and 14 days after autoreplantation of upper 1st molar into their own position. The maxilla were disected included both side of 1st molar. The collected tissue were processed from demineralization to paraffin embeding as usual procedure, and the specimens were prepared with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows : 1. There was no significant differences between control and experimental site on 1 and 2 days after replantation of tooth. In the case of 4th days, the evidence of tissue regeneration were observed on experimental site to compare the controls. New osteoid were revealed on high concentration of BMP at 7 days after replantation, and it became more obvious at 14 days, 2. The effect of the rh-BMP-4 coated on root surface was revealed slight influences for the prolifertion of cells of periodontium and tissue regeneration as dose-dependent pattern. 3. Bony ankylosis was observed between alveolar bone and root surface due to the remarkable amount of osteoid formation on the 14 days after replantation of root. In the conclusion, it was suggested that topical application of the rhBMP-4 on the root surface has influence on the periodontal ligament and alveolar bone. The application method of BMP on the root should be designed with calculation of proper concentration.