• Title/Summary/Keyword: lifting surface theory

Search Result 37, Processing Time 0.024 seconds

Stall Prediction of Wing Using the Nonplanar Lifting Surface Theory and an Iterative Decambering Approach (비평면 양력면 이론과 반복적 캠버변형 기법을 이용한 날개의 실속 특성 예측)

  • 조정현;조진수;조연우
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.1-6
    • /
    • 2006
  • This paper predicts the stall characteristics of three-dimensional wings. An iterative decambering approach is introduced into the nonplanar lifting surface method to take into consideration the stall characteristics of wings. An iterative decambering approach uses known airfoil lift curve and moment curve to predict the stall characteristics of wings. The multi-dimensional Newton iteration is used to take into consideration the coupling between the different sections of wings. Present results are compared with experiments and other numerical results. Computed results are in good agreement with other data. This scheme can be used for any wing with the twist or control surface and for wing-wing configurations such as wing-tail configuration or canard-wing configuration.

Optimization of the Propeller Steady Performance Behind Wake Field

  • Lee, Wang-Soo;Choi, Young-Dal;Kim, Gun-Do;Moon, Il-Sung;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.2
    • /
    • pp.10-25
    • /
    • 2007
  • With the sharp increase of the oil price, the issue of the energy saving requires even higher propulsive efficiency of the propellers. Traditionally the propellers have been designed with the criteria such as that of Lerbs optimum based on the lifting line theory and the empirical formulae of Lerbs and van Manen giving relations of the wake pitch with the wake non-uniformity. With the aid of the high speed computer, it is now possible to apply the time-consuming iterative approaches for the solution of the lifting surface problems. In this paper we formulate the variational problem to optimize the efficiency of the propeller operating in the given ship wake using the lifting surface method. The variational formulation relating the spanwise circulation distribution with the propulsive efficiency to be maximized is however non-linear in circulation distribution functions, thus the iterative method is applied to the quasi-linearized equations. The blade shape design also requires the iterative procedures, because the shape of the blade which is represented by the lifting surface is unknown a priori. The numerical code was validated with the DTNSRDC propeller 4119 which is well-known to be optimum in uniform inflow condition. In addition existing (well-designed) commercial propellers were selected and compared with the results of the open water tests and the self-propulsion tests.

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Proposal for Improvement in Prediction of Marine Propeller Performance Using Vortex Lattice Method (와류격자법에 의한 프로펠러 성능추정 향상을 위한 제안)

  • Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • Current trends in propeller design have led to the need for extremely complex blade shapes, which place great demands on the accuracy of design and analysis methods. This paper presents a new proposal for improving the prediction of propeller performance with a vortex lattice method using the lifting surface theory. The paper presents a review of the theory and a description of the numerical methods employed. For 8 different propellers, the open water characteristics are calculated and compared with experimental data. The results are in good agreement in the region of a high advanced velocity, but there are differences in the other case. We have corrected the parameters for the trailing wake modeling in this paper, and repeated the calculation. The new calculation results are more in agreement with the experimental data.

A Numerical Analysis for Prediction of Flow Rate of the Motor Cooling Fan (전동기 냉각팬의 유량예측을 위한 수치해석)

  • Lee, Sang-Hwan;Kang, Tae-In;Ahn, Chel-O;Seo, In-Soo;Lee, Chang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.670-677
    • /
    • 2005
  • In this study, we analyzed the three dimensional unsteady flow field around the motor cooling fan using the unsteady lifting surface theory. We obtained the flow rate for various geometries of fan from the calculated results of velocity field. For the data of design parameter and rotating speed(rpm) of the fan, we can predict the flow rate of the motor cooling fan with thin thickness through numerical analysis without the experimental data of the free stream velocity which is a boundary condition of flow field. the numerical results showed the flow rate within 10% of error in comparison with experimental results. The radial fans, which are often used as internal motor fan were also investigated with the same procedure.

  • PDF

The Added Mass and Damping for the Axial Rigid Body Motion of a Marine Propeller Rotating in a Uniform Flow (선박용 프로펠러의 종방향 강체운동에 대한 부가질량)

  • Kim, Young-Joong;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.309-314
    • /
    • 2008
  • An experimental method to estimate the added mass of a marine propeller has been developed for the axial rigid body motion in still water, and the experiments have been carried out. The experimental result has been compared to the theoretical result by PRODAS based on the unsteady lifting surface theory. The experimental method developed in this research and the theoretical method by PRODAS have been validated by confirming good agreements between the experimental results and the theoretical ones. Also the comparison to the results by empirical formula has been made and discussed.

A second order analytical solution of focused wave group interacting with a vertical wall

  • Sun, Yonggang;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.160-176
    • /
    • 2017
  • The interaction of focused wave groups with a vertical wall is investigated based on the second order potential theory. The NewWave theory, which represents the most probable surface elevation under a large crest, is adopted. The analytical solutions of the surface elevation, velocity potential and wave force exerted on the vertical wall are derived, up to the second order. Then, a parametric study is made on the interaction between nonlinear focused wave groups and a vertical wall by considering the effects of angles of incidence, wave steepness, focal positions, water depth, frequency bandwidth and the peak lifting factor. Results show that the wave force on the vertical wall for obliquely-incident wave groups is larger than that for normally-incident waves. The normalized peak crest of wave forces reduces with the increase of wave steepness. With the increase of the distance of focal positions from the vertical wall, the peak crest of surface elevation, although fluctuates, decreases gradually. Both the normalized peak crest and adjacent crest and trough of wave forces become larger for shallower water depth. For focused wave groups reflected by a vertical wall, the frequency bandwidth has little effects on the peak crest of wave elevation or forces, but the adjacent crest and trough become smaller for larger frequency bandwidth. There is no significant change of the peak crest and adjacent trough of surface elevation and wave forces for variation of the peak lifting factor. However, the adjacent crest increases with the increase of the peak lifting factor.

Design of Trans-cavitating Propellers and Performance Analyses of the Test Result

  • Yim, Boh-yun;Kim, Ki-Sup;Ahn, Jong-Woo;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.13-30
    • /
    • 1998
  • The design method for trans-cavitating propellers is considered as the combination of super-and sub-cavitating propellers. Especially the design method of the super-cavitating region of the propeller blade is elaborated. A design example is shown. Encouraging test results obtained in the Korea Research Institute of Ship and Ocean (KRISO) cavitation tunnel of a model designed by the present method are discussed.

  • PDF

A Numerical Analysis of the Thickness-Induced Effect on the Aerodynamic Characteristics of Wings Moving Near Ground

  • Han, Cheolheui;Cho, Jinsoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A numerical method to simulate Wing-In-Ground(WIG) effects for the wings moving near ground is developed. The aerodynamic analysis scheme for the wings is based on a compressible non-planar lifting surface panel method and the WIG effect is included by images. The thickness-induced effect is implemented into the lifting surface panel method by using the teardrop theory. The numerical simulation is done for the rectangular wings by varying the ground proximity. The present method is validated by comparing the calculated aerodynamic coefficients with other numerical results and measured data, showing good agreements.

  • PDF

Unsteady Aerodynimic Analysis of an Aircraft Using a Frequency Domain 3-D Panel Method (주파수영역 3차원 패널법을 이용한 항공기의 비정상 공력해석)

  • 김창희;조진수;염찬홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1808-1817
    • /
    • 1994
  • Unsteady aerodynamic analysis of an aircraft is done using a frequency domian 3-D panel method. The method is based on an unsteady linear compressible lifting surface theory. The lifting surface is placed in a flight patch, and angle of attack and camber effects are implemented in upwash. Fuselage effects are not considered. The unsteady solutions of the code are validated by comparing with the solutions of a hybrid doublet lattice-doublet point method and a doublet point method for various wing configurations at subsonic and supersonic flow conditions. The calculated results of dynamic stability derivatives for aircraft are shown without comparision due to lack of available measured data or calculated results.