• Title/Summary/Keyword: lifting

Search Result 1,291, Processing Time 0.033 seconds

Effect of Wearable Passive Back Support Exoskeleton on the Peak Muscle Activation of the Erector Spinae Muscles During Lifting

  • Hee-Eun Ahn;Tae-Lim Yoon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Background: Using wearable passive back-support exoskeletons in workplace has attracted attention as devices that support the posture of workers, enhance their physical capabilities, and reduce physical risk factors. Objects: This study aimed to investigate the effect of a wearable passive back-support exoskeleton on the activity of the erector spinae muscles during lifting tasks at various heights. Methods: Twenty healthy adult males were selected as subjects. Electromyography (EMG) was used to assess the activity of the erector spinae muscles while performing lifting tasks at three distinct heights (30, 40, and 50 cm), with and without the application of the Wearable Passive Back Support Exoskeleton. EMG data were gathered before and after the application of the orthosis. Results: The use of the Wearable Passive Back Support Exoskeleton resulted in a significant decrease in muscle activity when lifting a 10 kg object from heights of 30 and 40 cm (p < 0.05). Additionally, there was a significant reduction in muscle activity when lifting from a height of 50 cm compared with that at lower heights (p < 0.05). Conclusion: The use of a wearable passive back-support exoskeleton led to a decrease in the activity of the erector spinae muscles during lifting tasks, irrespective of the object's height. Our results suggest that the orthosis we tested may help decrease risk of lower back injuries during lifting.

An Analysis of Plantar Foot Pressure Distribution and COP Trajectory Path in Lifting Posture (들기 자세에서 족저의 압력 분포와 압력중심 이동거리의 분석)

  • Lee, Myoung-Hee;Han, Jin-Tae;Bae, Sung-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • The purpose of this study was to investigate the effect of two different lifting posture on the plantar foot pressure, force and COP(center of pressure) trajectory path during object lifting. Fourteen healthy adults who had no musculoskeletal disorders were instructed to lift with two postures(stoop and squat) and two object weights(empty box and 10 kg box). Plantar foot pressures, forces and COP trajectory path were recorded by the F-mat system(Tekscan, Boston, USA) during object lifting with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region and one heel region. Paired t-test was used to compare the outcomes of peak pressure and maximum force with different two lifting postures and two object weights. Plantar peak pressure and maximum force under hallux was significantly greater in squat posture than stoop posture during the two different boxes lifting(p<.05). During the empty box lifting, maximum force under lessor toes was significantly less and plantar peak pressure under second metatarsal region was significantly greater in squat than stoop(p<.05). Maximum force under heel was significantly less in squat than stoop posture during 10kg box lifting(p<.05). Finally, COP trajectory path was significantly greater in squat than stoop(p<.05). These findings confirm that there are significantly change in the structure and function of the foot during the object lifting with different posture. Future studies should focus on the contribution of both structural and functional change to the development of common foot problems in adults.

A Study on the Lifting Progress for Composite Precast Concrete Members of Green Frame (그린 프레임 합성 PC부재의 양중공정 분석 연구)

  • Joo, Jin-Kyu;Kim, Shin-Eun;Lee, Gun-Jea;Kim, Sun-Kuk;Lee, Sung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.34-42
    • /
    • 2012
  • Green frame technology intended to facilitate the remodeling of apartment housing complexes in Korea and extend their service life has been developed. Green frame design is a Rahmen structure using composite precast concrete members and, unlike a bearing-wall structure, lifting and installing structural members accounts for major steps of structural construction. Therefore, if green frame structure construction is to be scheduled appropriately, systematic lifting plan needs to be developed in advance. Development of lifting plan also requires unit lifting process of composite PC members (columns and beams) that consist of green frame to be analyzed first. Therefore, this study attempts to analyze the lifting process of composite PC members used in green frame structure. To that end, lifting procedure and time of composite PC column and beam are estimated and applied to a project case to analyze the lifting cycle of reference floor. Outcomes produced herein will be used as key data for development of lifting plan in subsequent green frame structure construction.

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

An Computer Simulation for Lew Back Injury Lifting Task (컴퓨터 시뮬레이션을 이용한 Lifting Task의 허리부상에 관한 연구)

  • 김인준;황규성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.125-136
    • /
    • 1992
  • Primary prevention of low back injury in industry has focused on assessing the person's ability to perform physical labor. If the job to be performed is known to require lifting and moving of materials which could stress the low back, then special consideration is given to the health and functional capability of the person, s back. The major pursuit in lifting task of research is to provide objective criteria based upon all of the relevant mechanical parameters which describe both man art task so as to minimize the probabilities of injury within the economic constraints of each organization. The purpose of this study is to predict the back compression of persons asked to lift objects while assuming different position by computer simulation. The primary result of this study is that the incidence of low back injury is correlated with higher lifting strenth requirements as determined by assessment of both the location and magnitude of the load lifted. It is, therefore, recommended that load lifting be considered potentially hazardous, and the action limit and the maximum permissiable limit be used to guide corrective action.

  • PDF

Biomechanical Assessment of Lifting Chair with Hip-up Function (힙업기능이 적용된 기립보조의자의 생체역학적 평가)

  • Bae, Ju-Hwan;Moon, In-Huyk
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • Lifting chair is a typical assistive product to aid for standing up and sitting down for persons with disability. It is particularly useful for the elderly persons whose muscular system is weakened by degenerative joint disease. This paper describes biomechanical assessments of lifting chair with hip-up function. In experiments we measured 3D motion and electromyographic(EMG) signal on the femoral muscle when subject performs the standing motion on the predetermined seat height. Based on assessment of the standing motion, we select the hip-up angle as 15 degrees to cover the relative femoral angle when EMG peak value is appeared. Using an implemented prototype lifting chair with hip-up function we perform standing experiments with five subjects. The experimental results show that the lifting and hip-up functions are effective to assist for standing up motion with less muscle force.

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

  • Chang, Chae-Hoon
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.143-154
    • /
    • 2008
  • Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.

Effects of Reciprocal Inhibition Using Thera-band on Scapular Muscle Activities During Arm-lifting Exercises in Subjects with Rounded Shoulder Posture

  • Lee, Chi-Hun;Cynn, Heon-Seock;Shin, A-Reum;Lee, Ji-Hyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.11-20
    • /
    • 2020
  • PURPOSE: Excessive activity of the upper trapezius (UT) muscle contributes to a rounded shoulder posture (RSP) through abnormal rotation of the scapula that weakens the lower trapezius (LT) and serratus anterior (SA) muscles. This study compared the effects of two arm-lifting exercises with and without the use of a Thera-band on the activities of LT, SA, and UT muscles, and the LT/UT and SA/UT activity ratio in subjects with a rounded shoulder posture. METHODS: Sixteen subjects with RSP participated in this study. All subjects performed arm-lifting (AL), diagonal arm-lifting (DAL), arm lifting with isometric adduction (ALIA), and diagonal arm-lifting with isometric adduction (DALIA) exercises. The surface electromyography data, LT, SA, UT, and the LT/UT and SA/UT activity ratios were measured. A paired t-test was used to compare the differences between two arm-lifting exercises and two arm lifting with isometric adduction exercises. RESULTS: In ALIA and DALIA exercises, the UT muscle activity decreased significantly, whereas the LT/UT, SA/UT activity ratio increased significantly. The activity of SA muscle increased significantly more with DALIA than that with DAL. CONCLUSION: Arm-lifting exercises using a Thera-band can be implemented as an effective way to reduce the UT overactivity and increase the SA activity and LT/UT, SA/UT activity ratio in subjects with RSP.

The Relationship between Grip Strength and Ground Reaction Force by Change of Position when Lifting Tasks (들기 작업할 때 자세의 변화에 따른 악력과 지면 반발력의 상관관계)

  • Jung, Sang-Yong;Gang, Jin-Woo;Koo, Jung-Wan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • The purpose of this study, during the lifting task was researching the difference and a relationship between the ground reaction force and the grip strength by change of position. After grip strength has measured in symmetry position and asymmetry position at 45cm and 75cm of height of hand, ground reaction force was measured by same attitude lifting wooden box. We analyzed the difference of grip strength and ground reaction force in each position change. The results of grip strength, the grip strength of both hand were significant difference that in study subject symmetry and asymmetry position (p<0.01). The results of symmetry lifting task, the study subjects was significant difference of the ground reaction force difference by height (p<0.05). Asymmetry lifting task was significant difference of ground reaction force difference by direction of rotation was changed (p<0.01). The result of it will rotate with non-dominant hand side of lifting tasks from height 75cm where it easily maintains a balance possibility and decreasing the load of the hand. Therefore, from the workshop in the work people, it will be between the height 75cm and non-dominant hand side of trunk rotatory direction in the lifting tasks. Future study is necessary researched about the change of grip strength when the height of the hand is higher, and the difference of the ground reaction force when the change of weight.

Effects of Intentional Abdominal Muscle Contraction on Lumbar Muscle Activities andLumbar Extension During Lifting Above the Shoulders (어깨위로 들어올리기 작업시 의도적인 복근수축이 요부근 활성도와요추신전각도에 미치는 영향)

  • Kim, Hui-Won;Gwon, O-Yun;Lee, Chung-Hwi;Jeon, Hye-Seon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • This study was conducted to evaluate the effect intentional contraction of abdominal muscles during lifting above shoulder on the muscles activities of the lower trunk and on the degree of lumbar extension. Fifteen healthy adult males were selected as test subjects. A 5kg weight was raised to the shoulder level, 20cm, and 40cm above the shoulder level. EMG activities of all muscles except the rectus abdominis were significantly greater when subjects were asked to contract their abdominal muscles intentionally during lifting(p<0.05). Degree of lumbar extension also significantly decreased with intentional abdominal contraction during the lifting. Also, degree of lumbar extension significantly increased with increase in lifting height(p<0.05). The results of this study show that intentional contraction of abdominal muscles during lifting above shoulder increases the EMG activities of external abdominis oblique, internal abdominis oblique, and erector spinae.