• Title/Summary/Keyword: lift resistance

Search Result 116, Processing Time 0.025 seconds

Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations (연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구)

  • Lee, Hyunjee;Shin, Jiuk;Kim, Minsun;Choi, Kisun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.5-12
    • /
    • 2018
  • The foundation of the multi-span greenhouse structures is designed with small shallow concrete foundation considering mainly the vertical load. However, recently, due to an abnormal climate such as strong wind, horizontal load and up-lift load over design strength are applied to the foundation, causing safety problems of the greenhouse foundation. In order to reasonably evaluate the safety of greenhouse foundations, rotational and pullout stiffness expressed by the ground-foundation interaction should be evaluated, which also affects the safety of the upper structural members. In this study, three representative basic foundation types were selected by classifying greenhouse standards in Korea according to the shape, and the horizontal loading tests and theoretical calculation were performed for each foundation type. As a result of the comparison and analysis of the test and calculation, it was found that rotational resistance of the foundation is different according to the ratio of the contact area between the foundation and ground when the conditions of the foundation - ground contact surface and the mechanical properties of the ground are the same.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Development of Modeling Technique for Prediction of Driving Force and Kinetic Resistance of Agricultural Forklift (농업용 포크리프트의 구동력 및 운동저항 예측을 위한 모델링 기법 개발)

  • Jo, Jae-hyun;Kim, Jun-tae;Jeong, Jin-hyoung;Chang, Young-yoon;Park, Won-yeop;Lee, Sang-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.299-305
    • /
    • 2019
  • This study was initiated to solve the difficulties of aged and female workers in agriculture society due to aging and demise of young people. In the case of the conventional elevated lift, the risk of exposure to uneven road or work environment, not the difficulty of professional qualification and operation, and the risk of exposure to the uneven road or working environment, were also studied based on previous researches so that women could easily and efficiently perform productive agriculture. First, the simulation was carried out through the prediction model of traction performance using the object of agricultural forklift, and the soil of the Kimhae city in Gyeongnam (34.125kPa, internal friction angle 35.294deg, external friction angle 13.620deg, Adhesion force 5.750 kPa, average cone index 0-15 cm cl, 1001.8 kPa). In the case of the forklift for simulation, the driving force and the kinetic resistance prediction modeling of the agricultural electric forklift are modeled. Based on this model, the motor control drive adopts the 1232E model, which is a drive dedicated to AC motor, and divides the two drivers into master and slave And the model for the simulation was designed to control motor drive, hydraulic drive, and various outputs on the main PCB. The simulation model is undergoing continuous simulation, modification and supplementation. Based on this research, we will continue research for development of safer and more efficient agricultural electric forklift.

Characteristics and Fabrication of Micro Gas Sensor with Single Electrode (단일전극을 가진 마이크로 가스센서의 제작 및 특성)

  • Song, Kap-Duk;Bang, Yeung-Il;Lee, Sang-Mun;Lee, Yun-Su;Choi, Nak-Jin;Joo, Byung-Su;Seo, Moo-Gyo;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.350-357
    • /
    • 2002
  • Micro gas sensor with single electrode was proposed for improving stability and sensitivity. Generally, metal oxide gas sensors have two electrodes for heating and sensing. This fabricated new type sensor have only a single electrode by forming a sensing material onto heating electrode. Pt as a heating and sensing electrode was sputtered on glass substrate and a $SnO_2$ sensing material was thermally evaporated on Pt electrode. $SnO_2$ was patterned by lift-off process and then thermally oxidized in $O_2$ condition for 1 hr., $600^{\circ}C$. The size of fabricated sensor was $1.9{\times}2.1\;mm^2$. As a result of CO gas sensing characteristics, this sensor showed 100 mV change for 1,000 ppm and linearity for wide range($0{\sim}10,000\;ppm$) of gas concentrations. And the sensor shows a good recovery characteristics of 1% deviation compared to initial resistance.

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.

An Experimental Study for Improving the Durability of Concrete Bridge Decks (교량 바닥판 콘크리트의 내구성 증진을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Shin, Do-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2007
  • Concrete bridge decks are directly exposed to the severe environmental conditions such as rain water and deicing chemicals resulting in the freeze-thaw action and the rebar corrosion during their service lift. These deteriorations of bridge decks shorten the service lift and consequently they are the major concerns of the maintenance. The high performance concrete (HPC) deck is proposed as the alternative to minimize the deterioration problems. To develop more durable concrete deck, the performance characteristic tests of HPC mixtures were carried out. In this study, 4 different concrete mixtures were used varying the mineral admixtures as the cement replacement; ordinary portland cement (OPC), 20% fly ash (FA),20% fly ash with 4% silica fume (FS), and 40% ground granulated blast-furnace slag (BS). The design compressive strengths of HPC specimens were 27 MPa and 35 MPa, respectively. The results showed that the compressive strength of concrete did not much affect the durability of concrete. HPC with fly ash and silica lune (FS) were turned out to have the good durability and crack resistance.

The Study on Deposition and Characteristics of Pt-Co Alloy Thin Films for RTD Temperature Sensors (측온저항체 온도센서용 Pt-Co 합금박막의 증착과 특성에 관한 연구)

  • Chung, Gwiy-Sang;Noh, Sang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_{2}O_{3}$ substrate by magnetron cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_{2}O_{3}$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : $4.4\;W/cm^{2}$, Co : $6.91\;W/cm^{2}$, working vacuum of 10 mTorr and annealing conditions of $800^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively and the TCR value of Pt-Co alloy thin films with thickness of $3000{\AA}$ were $3740ppm/^{\circ}C$ in the temperature range of $25{\sim}600^{\circ}C$. These results indicate that Pt-Co alloy thin films have potentiality for the RTD temperature sensors.

  • PDF

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.