• 제목/요약/키워드: lift forces

검색결과 246건 처리시간 0.032초

추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究) (Wave Exciting Forces Acting on Ships in Following Seas)

  • 손경호;김진안
    • 대한조선학회지
    • /
    • 제21권3호
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

피칭 운동익에 작용하는 비정상 유체력 (Unsteady Force Characteristics on Foils Undergoing Pitching Motion)

  • 양창조
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.117-125
    • /
    • 2006
  • In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack.

저층 트롤에서 3차원 위치를 이용한 만곡형 전개판의 영각 추정 (An estimated angle of attack of a cambered otter board in a bottom trawl using three dimensional position)

  • 고광수;조봉곤;배재현;조성옥;원성재;윤홍근;박해훈
    • 수산해양기술연구
    • /
    • 제51권1호
    • /
    • pp.26-34
    • /
    • 2015
  • The angle of attack of a cambered otter board in a bottom trawl was estimated using a three-dimensional semi-analytic treatment of a towing cable (warp) system that was applied to the field experiments of a bottom trawl obtained by the Scanmar system. The equilibrium condition of the horizontal component and vertical component of forces was used to the three forces acting on the otter board in the horizontal plane. Those forces were the force on the warp at the bracket, hydrodynamic lift and drag forces on the otter board and the force on the hand rope attached just behind the otter board. Also the equilibrium of moment about the front edge of the otter board was used to find out the angle of attack of the cambered otter board. When the warp length was 120m and 180m long and the towing speed was between 1.23 and 1.90 m/s, the estimated angle of attack of the cambered otter board was ranged between $26.1^{\circ}$ and $29.6^{\circ}$, respectively, though the maximum lift force was at the angle of attack $22.6^{\circ}$. The angle of attack of the otter board was tended to increase weakly with the longer length of warp (180 m) at the same towing speed in the experiment.

플래핑 날개의 공력특성에 관한 실험적 연구 (An Experimental Study on Aerodynamic Characteristics of a Flapping Wing)

  • 송우길;장조원;전창수
    • 한국항공운항학회지
    • /
    • 제17권4호
    • /
    • pp.8-16
    • /
    • 2009
  • An experimental study was carried out to investigate aerodynamic characteristics on reduced frequency of flapping wings. The half span of the wing is 28cm, and the mean chord length of wing is 10cm. In flight, the Reynolds Number range of birds is about $10^4$, and the reduced frequency during a level flight is 0.25. The experimental variables of present study were set to have similar conditions with the bird flight's one. The freestream velocities in a wind tunnel were 2.50, 3.75 and $5.00^m/s$, and the corresponding Reynolds numbers were $1.7{\times}10^4$, $2.5{\times}10^4$ and $3.3{\times}10^4$, respectively. The wing beat frequencies of an experimental model were 2, 3 and 4Hz, and the corresponding reduced frequency was decided between 0.1 and 0.5. Aerodynamic forces of an experimental flapping model were measured by using 2 axis load-cell. Inertial forces measured in a vacuum chamber were removed from measuring forces in the wind tunnel in order to acquire pure aerodynamic forces. Hall sensors and laser trigger were used to make sure the exact position of wings during the flapping motion. Results show that the ratio of downstroke in a wing beat cycle is increased as a wing beat frequency increases. The instantaneous lift coefficient is the maximum value at the end of downstroke of flapping wing model. It is found that a critical reduced frequency with large lift coefficient is existed near k=0.25.

  • PDF

기동성 비행을 위한 날갯짓 경로의 최적화 (Optimization of the Flapping Motion for the High Maneuverability Flight)

  • 최중선;김재웅;이도형;박경진
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.653-663
    • /
    • 2012
  • 본 논문에서는 높은 기동성을 목적으로, 적절한 양력과 추진력이 발생하도록 스트로크 평면의 경사각을 고려하여 경로최적화를 수행한다. 기동성비행은 추진력을 최대화하는 비행, 양력을 최대화하는 비행, 양력과 추진력을 동시에 최대화하는 비행 세 가지로 정의하고 날갯짓운동은 단순한 사인함수로 이루어진 플런징과 피칭운동으로 정의하였다. 경로최적화 과정에서 직교배열표를 이용하여 후보점을 생성하고, 그 후보점에서 2 차원 비정상 유동해석을 하였다. 유동해석 결과를 바탕으로 크리깅방법을 이용하여 근사모델을 생성하였다. 그리고 설계정식화를 정의하고 유전알고리즘을 이용하여 최적화를 수행하였다. 세 가지 목적의 날갯짓 경로의 최적화를 통해 기동성비행을 위한 날갯짓 경로를 제시하였다. 또한 날갯짓 운동으로 인해 생성되는 와류를 분석함으로써 양력과 추진력의 발생원리를 확인하였다.

Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

  • Javaid, Muhammad Yasar;Ovinis, Mark;Hashim, Fakhruldin B.M.;Maimun, Adi;Ahmed, Yasser M.;Ullah, Barkat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.382-389
    • /
    • 2017
  • We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

히빙운동익에 작용하는 비정상 유체력 특성 (A Study on the Unsteady Fluid Forces Acting on a Heaving Foil)

  • 양창조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.150-156
    • /
    • 2006
  • A Flapping foil Produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 Profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also Presented the experimental results on the unsteady fluid forces of a heaving foil at various Parameters.

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

종만곡 V형 전개판의 영각 추정법 (An Estimating Mehod of the Angle of Attack of a Vertical V-type Otter Board)

  • 박해훈
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.113-121
    • /
    • 2005
  • How to extimate the angle of attack of a vertical V-type cambered otter board was described. A three-dimensional semi-analytic treatment of a towing cable system was applied to the field experiments of a midwater trawl obtained by the Scanmar system. Also the equilibrium condition of the horizontal component and vertical component of forces and moment around the otter board was used. When the warp length was 300m long and the towing speed was between 2.61 and 3.86 knots, the estimated angle of attack of the otter board was ranged between $24.7^{\circ}$ and $26.2^{\circ}$, though the maximum lift force was at the angle of attack $22^{\circ}$.

히빙운동익에 작용하는 비정상 유체력 특성 (Study on Unsteady Forces Acting on a Heaving Foil)

  • 양창조;김범석;최민선;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF