• Title/Summary/Keyword: lifetime performance

Search Result 730, Processing Time 0.027 seconds

Personalized Battery Lifetime Prediction for Mobile Devices based on Usage Patterns

  • Kang, Joon-Myung;Seo, Sin-Seok;Hong, James Won-Ki
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device's available battery lifetime based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the experimental trials used to validate our approach in the real world.

Cold Data Identification using Raw Bit Error Rate in Wear Leveling for NAND Flash Memory

  • Hwang, Sang-Ho;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.1-8
    • /
    • 2015
  • Wear leveling techniques have been studied to prolong the lifetime of NAND flash memory. Most of studies have used Program/Erase(P/E) cycles as wear index for wear leveling. Unfortunately, P/E cycles could not predict the real lifetime of NAND flash blocks. Therefore, these algorithms have the limited performance from prolonging the lifetime when applied to the SSD. In order to apply the real lifetime, wear leveling algorithms, which use raw Bit Error Rate(rBER) as wear index, have been studied in recent years. In this paper, we propose CrEWL(Cold data identification using raw Bit error rate in Wear Leveling), which uses rBER as wear index to apply to the real lifetime. The proposed wear leveling reduces an overhead of garbage collections by using HBSQ(Hot Block Sequence Queue) which identifies hot data. In order to reduce overhead of wear leveling, CrEWL does not perform wear leveling until rBER of the some blocks reaches a threshold value. We evaluate CrEWL in comparison with the previous studies under the traces having the different Hot/Cold rate, and the experimental results show that our wear leveling technique can reduce the overhead up to 41% and prolong the lifetime up to 72% compared with previous wear leveling techniques.

Lifetime Performance of Nili-ravi Buffaloes in Pakistan

  • Bashir, M.K.;Khan, M.S.;Bhatti, S.A.;Iqbal, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2007
  • Data on 1,037 Nili-Ravi buffaloes from four institutional herds were used to study lifetime milk yield, herd life, productive life and breeding efficiency. A general linear model was used to study the environmental effects while an animal model having herd, year of birth and age at first calving (as covariate) along with random animal effect was used to estimate breeding values. The lifetime milk yield, herd life, productive life and breeding efficiency averaged $7,723{\pm}164$ kg, $3,990{\pm}41$ days, $1,061{\pm}19$ days and 64 percent, respectively. All the traits were significantly (p<0.01) affected by the year of birth and herd of calving, while the herd life was also affected (p<0.01) by the age at first calving. The heritabilities for lifetime milk yield, herd life, productive life and breeding efficiency were $0.093{\pm}0.056$, $0.001{\pm}0.055$, $0.144{\pm}0.079$ and 0.001, respectively. The definition for productive life, where each lactation gets credit upto 10 months had slightly better heritability and may be preferred over the definition where no limit is placed on lactation length. The genetic correlation between productive life and lifetime milk yield was low but high between productive life and herd life. The selection for productive life will increase herd life while lifetime milk yield will also improve. The overall phenotypic trend during the period under the study was negative for lifetime milk yield (-280 kg/year), herd life (-93 days), productive life (-42 days/year) and breeding efficiency (-0.36 percent/year), whereas the genetic trend was positive for lifetime milk yield (+15 kg/year) and productive life (+4 days/year).

An Energy Efficient Cluster Formation Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 구성 알고리즘)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.185-190
    • /
    • 2007
  • The efficient node energy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing each energy consumption of the sensor node in the network. In this paper, we proposed a cluster formation algorithm to extend the lifetime of the networks and to maintain a balanced energy consumption of nodes. To obtain it, we add a tiny slot in a round frame, which enables to exchange the residual energy messages between the base station (BS). cluster heads, and nodes. The performance of the proposed protocol has been examined and evaluated with the NS 2 simulator. As a result of simulation, we have confirmed that our proposed algorithm show the better performance in terms of lifetime than LEACH. Consequently, our proposed protocol can effectively extend the network lifetime without other critical overhead and performance degradation.

The use of cost-benefit analysis in performance-based earthquake engineering of steel structures

  • Ravanshadnia, Hamidreza;Shakib, Hamzeh;Ansari, Mokhtar;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.561-570
    • /
    • 2022
  • It is of great importance to be able to evaluate different structural systems not only based on their seismic performance but also considering their lifetime service costs. Many structural systems exist that can meet the engineering requirements for different performance levels; therefore, these systems shall be selected based on their economic costs over time. In this paper, two structural systems, including special steel moment-resisting and the ordinary concentric braced frames, are considered, which are designed to meet the three performance levels: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). The seismic behavior of these two systems is studied under three strong ground motions (i.e., Tabas, Bam, Kajour earthquake records) using the Perform3D package, and the incurred damages to the studied systems are examined at two hazard levels. Economic analyses were performed to determine the most economical structural system to meet the specified performance level requirements, considering the initial cost and costs associated with damages of an earthquake that occurred during their lifetime. In essence, the economic lifetime study results show that the special moment-resisting frames at IO and LS performance levels are at least 20% more economical than braced frames. The result of the study for these building systems with different heights designed for different performance levels also shows it is more economical from the perspective of long-term ownership of the property to design for higher performance levels even though the initial construction cost is higher.

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks (무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘)

  • Gao, Xiang;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

Reliability Assessment Criteria of Brushless Motor for Optical Disk Drive (광기기 저장매체 구동용 BLDC 모터의 신뢰성 평가기준)

  • Song, Byeong-Suk;Chan, Sung-Il;Jeong, Hai-Sung;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • BLDC motors are stored in the devices such as CD-RW, COMBO, DVD-ROM and CD-ROM. It is indispensable to establish reliability assessment criteria for BLDC motors, especially in the world where IT grows rapidly. In this article, reliability certification procedure is given. The reliability certification procedure consists of two separate tests such as quality certification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.

  • PDF

Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

  • Han, Miseon;Han, Youngsun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.337-345
    • /
    • 2016
  • Recently, as the number of cores in computer systems has increased, the need for larger memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM), popularly used as main memory for decades, now faces a scalability limitation. Phase change memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short write endurance, direct use of PCM in main memory incurs a significant problem due to its short lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit flips per write request. In this paper, we describe the PCM operating principles in detail and explore various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction rate and lifetime improvement.

Energy Efficient IDS Node Distribution Algorithm using Minimum Spanning Tree in MANETs

  • Ha, Sung Chul;Kim, Hyun Woo
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2016
  • In mobile ad hoc networks(MANETs), all the nodes in a network have limited resources. Therefore, communication topology which has long lifetime is suitable for nodes in MANETs. And MANETs are exposed to various threats because of a new node which can join the network at any time. There are various researches on security problems in MANETs and many researches have tried to make efficient schemes for reducing network power consumption. Power consumption is necessary to secure networks, however too much power consumption can be critical to network lifetime. This paper focuses on energy efficient monitoring node distribution for enhancing network lifetime in MANETs. Since MANETs cannot use centralized infrastructure such as security systems of wired networks, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method to cover all the nodes in a network and enhance the network lifetime. Simulation results show that the proposed algorithm has better performance in comparison with the existing algorithms.