• Title/Summary/Keyword: lifespan

Search Result 543, Processing Time 0.026 seconds

Effects of special heat treatment on changes in the hardness of a metal-ceramic alloy during the firing process (금속-도재 보철용 합금의 열처리가 소성과정 중 경도 변화에 미치는 영향)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • Purpose: This study aimed to evaluate the effects of a special heat treatment on Pd-Au-Ag metal-ceramic alloy after degassing treatment and on changes in the hardness of the alloy during the firing process. Methods: Specimen alloys were cast and subjected to degassing at 900℃ for 10 minutes. These specimens were then subjected to a special heat treatment at 600℃ for 15 minutes in a dental porcelain furnace. Further, the specimens were subjected to simulated firing in the porcelain furnace. The resulting specimens were then tested for hardness, and changes in the microstructure were observed. Results: There was a decrease in the hardness of the alloy during the simulated firing of the cast alloy due to the coarsening of the particles. Meanwhile, additional heat treatment after degassing was found to play a crucial role in preventing a decrease in hardness. This treatment effectively suppressed the coarsening of the precipitates during repeated firing at high temperatures. Conclusion: Specific heat treatment of the Pd-Au-Ag metal-ceramic alloy prevented a decrease in its hardness and extended the lifespan of the metal-ceramic prosthesis.

Effect of Cross-Linking Characteristic on the Physical Properties and Storage Stability of Acrylic Rubber

  • Seong-Guk Bae;Min-Jun Gim;Woong Kim;Min-Keun Oh;Ju-Ho Yun;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.136-141
    • /
    • 2023
  • Polyacrylic rubber (ACM) is well known for its excellent heat resistance and chemical stability. Additionally, its performance can be readily manipulated by modifying its functional groups, rendering it highly attractive to various industries. However, extreme climate changes have necessitated an expansion of the operating temperature range and lifespan of ACM products. This requires the optimization of both the compounding process and functional-group design. Hence, we investigated the relationship between the cross-linking system and mechanical properties of an ACM with a carboxylic cure site. The crosslink density is determined by chemical kinetics according to the structure of additives, such as diamine crosslinkers and guanidine accelerators. This interaction enables the manipulation of the scotch time and mechanical properties of the compound. This fundamental study on the correlation analysis between cross-linking systems, physical properties, and storage stability can provide a foundation for material research aimed at satisfying the increasingly demanding service conditions of rubber products.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

Clustering Methods for Cluster Uniformity in Wireless Sensor Networks (무선센서 네트워크에서 클러스터 균일화를 위한 클러스터링 방법)

  • Joong-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.679-682
    • /
    • 2023
  • In wireless sensor networks, communication failure between sensor nodes causes continuous connection attempts, which results in a large power loss. In this paper, an appropriate distance between the CH(Cluster Head) node and the communicating sensor nodes is limited so that a group of clusters of appropriate size is formed on a two-dimensional plane. To equalize the cluster size, sensor nodes in the shortest distance communicate with each other to form member nodes, and clusters are formed by gathering nearby nodes. Based on the proposed cluster uniformity algorithm, the improvement rate of cluster uniformity is shown by simulation results. The proposed method can improve the cluster uniformity of the network by about 30%.

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

Standardized multi-institutional data analysis of fixed and removable prosthesis: estimation of life expectancy with regards to variable risk factors

  • Hae-In Jeon;Joon-Ho Yoon;Jeong Hoon Kim;Dong-Wook Kim;Namsik Oh;Young-Bum Park
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.67-76
    • /
    • 2024
  • PURPOSE. This study aims to assess and predict lifespan of dental prostheses using newly developed Korean Association of Prosthodontics (KAP) criteria through a large-scale, multi-institutional survey. MATERIALS AND METHODS. Survey was conducted including 16 institutions. Cox proportional hazards model and principal component analysis (PCA) were used to find out relevant factors and predict life expectancy. RESULTS. 1,703 fixed and 815 removable prostheses data were collected and evaluated. Statistically significant factors in fixed prosthesis failure were plaque index and material type, with a median survival of 10 to 18 years and 14 to 20 years each. In removable prosthesis, factors were national health insurance coverage, antagonist type, and prosthesis type (complete or partial denture), with median survival of 10 to 13 years, 11 to 14 years, and 10 to 15 years each. For still-usable prostheses, PCA analysis predicted an additional 3 years in fixed and 4.8 years in removable prosthesis. CONCLUSION. Life expectancy of a prosthesis differed significantly by factors mostly controllable either by dentist or a patient. Overall life expectancy was shown to be longer than previous research.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Non-Controlled Clinical Efficacy Study Following Brain Six Complex Extract Administration in Dogs with Cognitive Dysfunction Syndrome

  • Ga-Won Lee;Woong-Bin Ro;Min-Hee Kang;Heyong-Seok Kim;Hee-Myung Park
    • Journal of Veterinary Clinics
    • /
    • v.40 no.6
    • /
    • pp.408-413
    • /
    • 2023
  • The incidence of canine cognitive dysfunction syndrome (CCDS), a prominent geriatric disease, is increasing because of the extended lifespan of companion animals. Various complementary therapies have been proposed for the management of CCDS. This study evaluated the clinical efficacy of the Brain Six Complex Extract in dogs with cognitive dysfunction syndrome (CDS). Fifteen dogs with CDS were included, and four to five drops of Brain Six Complex Extract, composed of herbal extracts, were applied around the dorsal neck of all dogs twice daily for 1-3 months. Clinical efficacy was evaluated using the CCDS scale, and serum β-amyloid oligomer concentrations were measured before and after administration of the extract. The CCDS scale score significantly decreased after administration in dogs with CDS (p = 0.0313), compared to pre-administration levels. Although the serum β-amyloid oligomer concentration decreased after administration, the change was not statistically significant (p > 0.05). A notable decrease was observed between pre- and post-administration in dogs with β-amyloid levels >300 pg/mL (p = 0.0313). The laboratory results showed no remarkable adverse effects of the extract. This study suggests that Brain Six Complex Extract extract could be an adjunctive treatment for dogs with CDS.

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes (리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구)

  • Jinhee Lee;Ji-Yoon Jeong;Jaeyun Ha;Yong-Tae Kim;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.