• Title/Summary/Keyword: library performance feature

Search Result 41, Processing Time 0.019 seconds

Classification Performance Analysis of Cross-Language Text Categorization using Machine Translation (기계번역을 이용한 교차언어 문서 범주화의 분류 성능 분석)

  • Lee, Yong-Gu
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.1
    • /
    • pp.313-332
    • /
    • 2009
  • Cross-language text categorization(CLTC) can classify documents automatically using training set from other language. In this study, collections appropriated for CLTC were extracted from KTSET. Classification performance of various CLTC methods were compared by SVM classifier using machine translation. Results showed that the classification performance in the order of poly-lingual training method, training-set translation and test-set translation. However, training-set translation could be regarded as the most useful method among CLTC, because it was efficient for machine translation and easily adapted to general environment. On the other hand, low performance was shown to be due to the feature reduction or features with no subject characteristics, which occurred in the process of machine translation of CLTC.

Automatic Classification of Malicious Usage on Twitter (트위터 상의 악의적 이용 자동분류)

  • Kim, Meen Chul;Shim, Kyu Seung;Han, Nam Gi;Kim, Ye Eun;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.47 no.1
    • /
    • pp.269-286
    • /
    • 2013
  • The advent of Web 2.0 and social media is taking a leading role of emerging big data. At the same time, however, informational dysfunction such as infringement of one's rights and violation of social order has been increasing sharply. This study, therefore, aims at defining malicious usage, identifying malicious feature, and devising an automated method for classifying them. In particular, the rule-based experiment reveals statistically significant performance enhancement.

Place Recognition Method Using Quad Vocabulary Tree (쿼드 어휘 트리를 이용한 장소 인식 방법)

  • Park, Seoyeong;Hong, Hyunki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.569-577
    • /
    • 2016
  • Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.

A Comparative Study on Deep Learning Topology for Event Extraction from Biomedical Literature (생의학 분야 학술 문헌에서의 이벤트 추출을 위한 심층 학습 모델 구조 비교 분석 연구)

  • Kim, Seon-Wu;Yu, Seok Jong;Lee, Min-Ho;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.77-97
    • /
    • 2017
  • A recent sharp increase of the biomedical literature causes researchers to struggle to grasp the current research trends and conduct creative studies based on the previous results. In order to alleviate their difficulties in keeping up with the latest scholarly trends, numerous attempts have been made to develop specialized analytic services that can provide direct, intuitive and formalized scholarly information by using various text mining technologies such as information extraction and event detection. This paper introduces and evaluates total 8 Convolutional Neural Network (CNN) models for extracting biomedical events from academic abstracts by applying various feature utilization approaches. Also, this paper conducts performance comparison evaluation for the proposed models. As a result of the comparison, we confirmed that the Entity-Type-Fully-Connected model, one of the introduced models in the paper, showed the most promising performance (72.09% in F-score) in the event classification task while it achieved a relatively low but comparable result (21.81%) in the entire event extraction process due to the imbalance problem of the training collections and event identify model's low performance.

Design of Integrated Management System for Electronic Library Based on SaaS and Web Standard

  • Lee, Jong-Hoon;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2015
  • Management systems for electronic library have been developed on the basis of Client/Server or ASP framework in domestic market for a long time. Therefore, both service provider and user suffer from their high cost and effort in management, maintenance, and repairing of software as well as hardware. Recently in addition, mobile devices like smartphone and tablet PC are frequently used as terminal devices to access computers through the Internet or other networks, sophisticatedly customized or personalized interface for n-screen service became more important issue these days. In this paper, we propose a new scheme of integrated management system for electronic library based on SaaS and Web Standard. We design and implement the proposed scheme applying Electronic Cabinet Guidelines for Web Standard and Universal Code System. Hosted application management style and software on demand style service models based on SaaS are basically applied to develop the management system. Moreover, a newly improved concept of duplication check algorithm in a hierarchical evaluation process is presented and a personalized interface based on web standard is applied to implement the system. Algorithms of duplication check for journal, volume/number, and paper are hierarchically presented with their logic flows. Total framework of our development obeys the standard feature of Electronic Cabinet Guidelines offered by Korea government so that we can accomplish standard of application software, quality improvement of total software, and reusability extension. Scope of our development includes core services of library automation system such as acquisition, list-up, loan-and-return, and their related services. We focus on interoperation compatibility between elementary sub-systems throughout complex network and structural features. Reanalyzing and standardizing each part of the system under the concept on the cloud of service, we construct an integrated development environment for generating, test, operation, and maintenance. Finally, performance analyses are performed about resource usability of server, memory amount used, and response time of server etc. As a result of measurements fulfilled over 5 times at different test points and using different data, the average response time is about 62.9 seconds for 100 clients, which takes about 0.629 seconds per client on the average. We can expect this result makes it possible to operate the system in real-time level proof. Resource usability and memory occupation are also good and moderate comparing to the conventional systems. As total verification tests, we present a simple proof to obey Electronic Cabinet Guidelines and a record of TTA authentication test for topics about SaaS maturity, performance, and application program features.

An Implementation of Embedded Linux System for Embossed Digit Recognition using CNN based Deep Learning (CNN 기반 딥러닝을 이용한 임베디드 리눅스 양각 문자 인식 시스템 구현)

  • Yu, Yeon-Seung;Kim, Cheong Ghil;Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.

A design and implementation of Face Detection hardware (얼굴 검출을 위한 SoC 하드웨어 구현 및 검증)

  • Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.43-54
    • /
    • 2007
  • This paper presents design and verification of a face detection hardware for real time application. Face detection algorithm detects rough face position based on already acquired feature parameter data. The hardware is composed of five main modules: Integral Image Calculator, Feature Coordinate Calculator, Feature Difference Calculator, Cascade Calculator, and Window Detection. It also includes on-chip Integral Image memory and Feature Parameter memory. The face detection hardware was verified by using S3C2440A CPU of Samsung Electronics, Virtex4LX100 FPGA of Xilinx, and a CCD Camera module. Our design uses 3,251 LUTs of Xilinx FPGA and takes about 1.96${\sim}$0.13 sec for face detection depending on sliding-window step size, when synthesized for Virtex4LX100 FPGA. When synthesized on Magnachip 0.25um ASIC library, it uses about 410,000 gates (Combinational area about 345,000 gates, Noncombinational area about 65,000 gates) and takes less than 0.5 sec for face realtime detection. This size and performance shows that it is adequate to use for embedded system applications. It has been fabricated as a real chip as a part of XF1201 chip and proven to work.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Robust Hierarchical GLOCAL Hash Generation based on Image Histogram (히스토그램 기반의 강인한 계층적 GLOCAL 해쉬 생성 방법)

  • Choi, Yong-Soo;Kim, Hyoung-Joong;Lee, Dal-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.133-140
    • /
    • 2011
  • Recently, Web applications, such as Stock Image and Image Library, are developed to provide the integrated management for user's images. Image hash techniques are used for the image registration, management and retrieval as the identifier and many researches have been performed to raise the hash performance. This paper proposes GLOCAL image hashing method utilizing the hierarchical histogram which based on histogram bin population method. So far, many researches have proven that image hashing techniques based on histogram are robust image processing and geometrical attack. We modified existing image hashing method developed by our research team. The main idea is that it makes more fluent hash string if we have histogram bin of specific length as shown in the body of paper. Finally, we can raise the magnitude of hash string within same context or feature and strengthen the robustness of hash.

Secure User and Program Interface for SecuROS (SecuROS 에서 개발된 사용자 및 프로그램 인터페이스)

  • Doo, So-Young;Go, Jong-Guk;Eun, Seong-Gyeong;Kim, Jeong-Nyeo;Gong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.557-564
    • /
    • 2001
  • Many people use Linux and FreeBSD because it is freeware and excellent performance. The open source code is very important feature but it also has some problem which may be attacked by hackers frequently. This paper describes the SecuROS of secure operating system that is best solution to this problem and introduces user and programmer interface for active use of secure operating system. Developed secure operating system is composed of the access control method MAC and ACL and conforms to the POSIX which is universally used.

  • PDF