Journal of the Korean Society for Library and Information Science
/
v.43
no.1
/
pp.313-332
/
2009
Cross-language text categorization(CLTC) can classify documents automatically using training set from other language. In this study, collections appropriated for CLTC were extracted from KTSET. Classification performance of various CLTC methods were compared by SVM classifier using machine translation. Results showed that the classification performance in the order of poly-lingual training method, training-set translation and test-set translation. However, training-set translation could be regarded as the most useful method among CLTC, because it was efficient for machine translation and easily adapted to general environment. On the other hand, low performance was shown to be due to the feature reduction or features with no subject characteristics, which occurred in the process of machine translation of CLTC.
Kim, Meen Chul;Shim, Kyu Seung;Han, Nam Gi;Kim, Ye Eun;Song, Min
Journal of the Korean Society for Library and Information Science
/
v.47
no.1
/
pp.269-286
/
2013
The advent of Web 2.0 and social media is taking a leading role of emerging big data. At the same time, however, informational dysfunction such as infringement of one's rights and violation of social order has been increasing sharply. This study, therefore, aims at defining malicious usage, identifying malicious feature, and devising an automated method for classifying them. In particular, the rule-based experiment reveals statistically significant performance enhancement.
Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.
Kim, Seon-Wu;Yu, Seok Jong;Lee, Min-Ho;Choi, Sung-Pil
Journal of the Korean Society for Library and Information Science
/
v.51
no.4
/
pp.77-97
/
2017
A recent sharp increase of the biomedical literature causes researchers to struggle to grasp the current research trends and conduct creative studies based on the previous results. In order to alleviate their difficulties in keeping up with the latest scholarly trends, numerous attempts have been made to develop specialized analytic services that can provide direct, intuitive and formalized scholarly information by using various text mining technologies such as information extraction and event detection. This paper introduces and evaluates total 8 Convolutional Neural Network (CNN) models for extracting biomedical events from academic abstracts by applying various feature utilization approaches. Also, this paper conducts performance comparison evaluation for the proposed models. As a result of the comparison, we confirmed that the Entity-Type-Fully-Connected model, one of the introduced models in the paper, showed the most promising performance (72.09% in F-score) in the event classification task while it achieved a relatively low but comparable result (21.81%) in the entire event extraction process due to the imbalance problem of the training collections and event identify model's low performance.
Management systems for electronic library have been developed on the basis of Client/Server or ASP framework in domestic market for a long time. Therefore, both service provider and user suffer from their high cost and effort in management, maintenance, and repairing of software as well as hardware. Recently in addition, mobile devices like smartphone and tablet PC are frequently used as terminal devices to access computers through the Internet or other networks, sophisticatedly customized or personalized interface for n-screen service became more important issue these days. In this paper, we propose a new scheme of integrated management system for electronic library based on SaaS and Web Standard. We design and implement the proposed scheme applying Electronic Cabinet Guidelines for Web Standard and Universal Code System. Hosted application management style and software on demand style service models based on SaaS are basically applied to develop the management system. Moreover, a newly improved concept of duplication check algorithm in a hierarchical evaluation process is presented and a personalized interface based on web standard is applied to implement the system. Algorithms of duplication check for journal, volume/number, and paper are hierarchically presented with their logic flows. Total framework of our development obeys the standard feature of Electronic Cabinet Guidelines offered by Korea government so that we can accomplish standard of application software, quality improvement of total software, and reusability extension. Scope of our development includes core services of library automation system such as acquisition, list-up, loan-and-return, and their related services. We focus on interoperation compatibility between elementary sub-systems throughout complex network and structural features. Reanalyzing and standardizing each part of the system under the concept on the cloud of service, we construct an integrated development environment for generating, test, operation, and maintenance. Finally, performance analyses are performed about resource usability of server, memory amount used, and response time of server etc. As a result of measurements fulfilled over 5 times at different test points and using different data, the average response time is about 62.9 seconds for 100 clients, which takes about 0.629 seconds per client on the average. We can expect this result makes it possible to operate the system in real-time level proof. Resource usability and memory occupation are also good and moderate comparing to the conventional systems. As total verification tests, we present a simple proof to obey Electronic Cabinet Guidelines and a record of TTA authentication test for topics about SaaS maturity, performance, and application program features.
Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.44
no.4
/
pp.43-54
/
2007
This paper presents design and verification of a face detection hardware for real time application. Face detection algorithm detects rough face position based on already acquired feature parameter data. The hardware is composed of five main modules: Integral Image Calculator, Feature Coordinate Calculator, Feature Difference Calculator, Cascade Calculator, and Window Detection. It also includes on-chip Integral Image memory and Feature Parameter memory. The face detection hardware was verified by using S3C2440A CPU of Samsung Electronics, Virtex4LX100 FPGA of Xilinx, and a CCD Camera module. Our design uses 3,251 LUTs of Xilinx FPGA and takes about 1.96${\sim}$0.13 sec for face detection depending on sliding-window step size, when synthesized for Virtex4LX100 FPGA. When synthesized on Magnachip 0.25um ASIC library, it uses about 410,000 gates (Combinational area about 345,000 gates, Noncombinational area about 65,000 gates) and takes less than 0.5 sec for face realtime detection. This size and performance shows that it is adequate to use for embedded system applications. It has been fabricated as a real chip as a part of XF1201 chip and proven to work.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.12
/
pp.3330-3344
/
2023
This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.1
/
pp.133-140
/
2011
Recently, Web applications, such as Stock Image and Image Library, are developed to provide the integrated management for user's images. Image hash techniques are used for the image registration, management and retrieval as the identifier and many researches have been performed to raise the hash performance. This paper proposes GLOCAL image hashing method utilizing the hierarchical histogram which based on histogram bin population method. So far, many researches have proven that image hashing techniques based on histogram are robust image processing and geometrical attack. We modified existing image hashing method developed by our research team. The main idea is that it makes more fluent hash string if we have histogram bin of specific length as shown in the body of paper. Finally, we can raise the magnitude of hash string within same context or feature and strengthen the robustness of hash.
Many people use Linux and FreeBSD because it is freeware and excellent performance. The open source code is very important feature but it also has some problem which may be attacked by hackers frequently. This paper describes the SecuROS of secure operating system that is best solution to this problem and introduces user and programmer interface for active use of secure operating system. Developed secure operating system is composed of the access control method MAC and ACL and conforms to the POSIX which is universally used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.