• 제목/요약/키워드: levitation control

검색결과 286건 처리시간 0.028초

배터리로 구동되는 자기부상시스템의 부상제어회로 설계 (Levitation Control Circuit Design for a Magnetic Levitation System Supplied with a Battery)

  • 남윤호;박승찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.27-29
    • /
    • 2004
  • In this paper, a levitation control circuit for a magnetic levitation system supplied with a battery is designed. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. Moreover the DSP includes PWM generator, A/D converter, etc. The feedback signals from gap sensors go into A/D converter of DSP to compare with reference. As a result, The design procedures of the levitation control circuit and battery power distribution system are described and basic experiment results are shown.

  • PDF

Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage

  • Zhang, Shansi;Ma, Shuyuan;Wang, Weiming
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2116-2124
    • /
    • 2018
  • Magnetic levitation system with the advantages of non-contact, no friction and no wear can satisfy the requirement of high precision and high speed positioning. In this paper, magnetic levitation positioning stage which mainly consists of planar coil and HALBACH permanent magnet array and its control and driving system are designed. Magnetic levitation system is a highly nonlinear and strongly coupled complex system and its control performance can be influenced by the uncertainty and external disturbance. So exact feedback linearization method is used to realize exact linearization and decoupling, and a strategy of sliding mode control based on disturbance observer is proposed to compensate the uncertainty and external disturbance. Detailed proofs of observer's convergence property and system stability are derived. Both the simulation and experiment results verify the effectiveness of sliding mode control algorithm based on disturbance observer.

자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계 (System Design Considering the required performance of the Levitation Control in Maglev)

  • 조정민;이종민;강병관;박성호;김철호;최종묵;김국진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF

초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템 설계 (Design of Hybrid Type Levitation and Propulsion System for High-Speed Maglev)

  • 조한욱;한형석;이종민;김봉섭;노규석;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.94-96
    • /
    • 2009
  • This paper deals with the design considerations of electro-magnet (EM)-permanent magnet (PM) hybrid levitation and propulsion device for magnetically levitated (maglev) vehicles. Several design considerations such as machine structure, manufacturing, and control strategy are described. In order to verify the design scheme and feasibility of control strategy, dynamic test set is implemented and tested.

  • PDF

개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계 (Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.

Position Control of Magnetic Levitation Transfer System by Pitch Angle

  • Liu Ming-Zhao;Tsuji Teruo;Hanamoto Tsuyoshi
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.264-270
    • /
    • 2006
  • Magnetic levitation transfer systems are useful for transfer tools in clean rooms and positioning control systems with high precision because of frictionless characteristics. In this paper, the new method is proposed which is a sensorless position. At first, the magnetic levitation is performed by state feedback control with a disturbance observer for each of six axes of the movement of a levitated vehicle. The position of the vehicle is then estimated as the disturbance term of a disturbance observer for a pitch angle which is one of the control axes for the magnetic levitation. In addition, the positioning force is generated by the pitch angle control which gives a tilt to the levitated vehicle so that it generates the horizontal component of force.

자기부상 시스템의 부상제어기 설계 (A Levitation Controller Design for a Magnetic Levitation System)

  • 김종문;강도현;박민국;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권6호
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

자기 부상계의 센서리스 실현에 관한 연구 (A Study on the Sensorless Realization of Magnetic Levitation System)

  • 김창화;정병건;양주호
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.195-203
    • /
    • 1998
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing contoller by $H_{\infty}$ control theory using the sensorless method proposed by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless magnetic levitation system through results of actual experiment.

  • PDF

1 자유도 능동제어에 의한 영구자석 반발형 자기부상 테이블의 구현 (Implementation of permanent Magnetic Repulsion Type of Magnetic Levitation Table Using One Degree-of-freedom Active Control)

  • 조영근;최기봉;신시타다히코;시모코베아키라
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.125-132
    • /
    • 2002
  • This paper shows an experimental magnetic levitation table using one degree-of-freedom active control. The magnetic levitation table using repulsions of permanent magnets was theoretically presented already. Thus the objective of this paper is to prove stable levitation with only one degree-of-freedom active control experimentally. For the design of the system, at first, permanent magnets are selected. Secondly, the spring constants of the virtual spring are obtained by simulation. Thirdly, the moving magnets are arranged using a stable layout relation. Fourthly, a linear voice coil motor is designed. Finally, the magnetic levitation system is manufactured. The phenomenon of stable levitation in the manufactured table is proven by means of dynamic time and frequency responses. The differences between the theoretical natural frequencies and experimental ones are analyzed. Also, stable range in the control direction is shown experimentally.