• Title/Summary/Keyword: level gauge

Search Result 248, Processing Time 0.023 seconds

The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace (고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계)

  • Cho, Nae-Soo;Han, Mu-Ho;Kwon, Woo-Hyen;Choi, Youn-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

Long-term Change in Sea Level along the Eastern Coastal Waters of Korea using Tide Gauge, Water Temperature and Salinity (조위 및 수온, 염분 데이터를 이용한 동해 연안의 해수면 변화)

  • Park, Se-Young;Lee, Chung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.801-806
    • /
    • 2014
  • Long-term change in sea level along the eastern coast of Korea was illustrated using four tide-gauge station (Pohang, Mukho, Sokcho, Ulleung) data, water temperature and salinity. Seasonal variation in the sea level change was dominant. The sea level change by steric height derived from water temperature and salinity was relatively lower than that measured from the tide-gauge stations. Sea level rising rate per year by steric height increased with latitude. The effect of salinity(water temperature) on the sea level change is greater in winter(in summer).

Optimal design of dual magnetic float type level gauge to detect a specific level (특정 레벨을 검출하기 위한 2단 Magnetic Float 타입 레벨 게이지의 최적 설계에 관한 연구)

  • Kim, Dong-Sok;Han, Jae-Man;Park, Gwan-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.308-316
    • /
    • 2008
  • For the measurement of liquid level in ship's cargo tank, ballast tank, fuel oil tank and fresh water tank, several types of gauge meter are used such as tubular type, magnetic float type, reflex type transparent type and welding pad type. Among them, magnetic float type gauge meter is environmental friendly device because it is free of power source and maintenance. The main obstacle of the device is relatively large error bound. In this paper, finite element method is used to design and analysis of the magnetic float type gauge meter. The operation of reed switch according to the magnetic field has been successfully described and agreed well with experimental measurement. The optimum geometry with combination of permanent magnet and reed switches are designed to achieve 98 % accuracy of fluid level.

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.

Comparison of Topex/Poseidon sea levels data and Tide Gause sea levels data from the South Indian Ocean (남인도양에서의 해수면에 대한 위성자료(Topex/Poseidon 고도계)와 현장자료(Tide Gauge 해면계)간의 비교)

  • 윤홍주;김상우;이문옥;박일흠
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • According to standard procedures as defined in the users handbook for sea level data processes, I was compared to Topex/poseidon sea level data from the first 350days of mission and Tide Gauge sea level data from the Amsterdam- Crozet- Kerguelen region in the South Indian Ocean. The comparison improves significantly when many factors for the corrections were removed, then only the aliased oceanic tidal energy is removed by oceanic tide model in this period. Making the corrections and smoothing the sea level data over 60km along-track segments and the Tide Gauge sea level data for the time series results in the digital correlation and RMS difference between the two data of c=-0.12 and rms=11.4cm, c=0.55 and rms=5.38cm, and c=0.83 and rms=2.83cm for the Amsterdam, Crozet and Kerguelen plateau, respectively. It was also found that the Kerguelen plateau has a comparisons due to propagating signals(the baroclinic Rossby wave with velocity of -3.9~-4.2cm/sec, period of 167days and amplitude of 10cm) that introduce temporal lags($\tau$=10~30days) between the altimeter and tide gauge time series. The conclusion is that on timescales longer than about 10days the RMS sea level errors are less than or of the order of several centimeters and are mainly due to the effects of currents rather than the effects of sterics(water temperature, density) and winds.

  • PDF

Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade (블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화)

  • Choi ByeongKeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

Position Optimization of Strain Gauge on Blades

  • Choi, Byeong-Keun;Lee, Hyun-Seob;Yang, Bo-Suk;Mignolet, Marc P.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.422-427
    • /
    • 2002
  • This paper focuses on the formulation and validation of an automatic strategy for the selection of the locations and directions of strain gauges to capture at best the modal response of a blade in a series of modes. These locations and directions are selected to render the strain measurements as robust as possible with respect to random mispositioning of the gauges and gauge failures. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from finite element strain data and includes the effects of gauge size. A genetic algorithm is used to find the strain gauge locations-directions that lead to the largest possible value of the smallest modal strain signal-to-noise ratio, in the absence of gauge failure, or of its expected value when gauge failure is possible. A fan blade is used to exemplify the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem, i.e. the mispositioning level, the probability of gauge failure, and the number of gauges.

  • PDF

High Resolution FMCW Level Gauge with Narrowband FMCW Radar (협대역 FMCW 레이더를 이용한 고해상도 레벨게이지)

  • Eum, Soung-Hyun;Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.899-905
    • /
    • 2012
  • Level Gauge using FMCW Radar is widely used and researched in many areas because of contactless, long range and flexibility. However FMCW level gauge requires wideband RF bandwidth for archiving high resolution of cm grade. In this paper we propose a new tx sawtooth waveform and processing algorithm with narrowband RF for wideband performance. The proposed method is based on STFT(Short-time fourier transform) and single sinusoidal carrier estimation method. From some experiments, we show that the resolution is improved upto 8 times with 300MHz FMCW radar.

Research of Determining the Compressed Gauge Limit Compensating for Guage Error (계측기오차 보상을 위한 압축한계 설정에 관한 연구)

  • Lee, Jong-Seong;Ko, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.89-93
    • /
    • 2002
  • When testing products before shipment to the customer, quality characteristics are measured to decide whether or not their values are between the specification limits. Unfortunately, this testing procedure can lead to incorrect decisions because of gauge error. That is, good products can erroneously be qualified as bad, and bad products as good, and this has consequences for producer's and consumer's risk. In cases of such as this, the compressed gauge limit can be used to achieve the desired product quality level dictated by the manufacturer or the customer. A compressed gauge limit is a limit set by the manufacturer on a test gauge that is tighter than the specification limit established by the customer. The compressed gauge limits should be set at levels to achieve the defect levels desired by the customer and simultaneously minimize the loss of good product that is rejected due to errors in the gauges. In this article, the models for determining the defect levels and the losses obtained by adding compressed gauge limits will be developed. A response surface model approach is utilized which allows an optimal operating condition to be generated relatively easily.

  • PDF

Optimal Placement of Strain Gauge for Vibration Measurement : Formulation and Assessment (진동측정을 위한 스트레인 게이지 설치위치 최적화 : 최적화 방법 및 평가)

  • 최창림;양보석;최병근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.757-766
    • /
    • 2004
  • This paper focuses on the formulation and validation of an automatic strategy to select the optimal location and direction of strain gauges for the measurement of the modal response. These locations and directions are important to render the strain measurements as robust as possible when a random mispositioning of the gauges and gauge failures are expected. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from strain data of finite element. The multi-step optimization strategy including genetic algorithm is used to find the strain gauge locations-directions that maximize the smallest modal strain signal-to-noise ratio in the absence of gauge failure or its expected value when gauge failure is possible. A flat Plate is used to prove the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem such as the mispositioning level, the probability of gauge failure, and the number of gauges.