• Title/Summary/Keyword: level exceedance probability

Search Result 25, Processing Time 0.027 seconds

Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site (원자력 발전소 부지에 대한 확률론적 지진해일 재해도 분석의 적용)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.265-271
    • /
    • 2015
  • The tsunami hazard analysis is performed for testing the application of probabilistic tsunami hazard analysis to nuclear power plant sites in the Korean Peninsula. Tsunami hazard analysis is based on the seismic hazard analysis. Probabilistic method is adopted for considering the uncertainties caused by insufficient information of tsunamigenic fault sources. Logic tree approach is used. Uljin nuclear power plant (NPP) site is selected for this study. The tsunamigenic fault sources in the western part of Japan (East Sea) are used for this study because those are well known fault sources in the East Sea and had several records of tsunami hazards. We have performed numerical simulations of tsunami propagation for those fault sources in the previous study. Therefore we use the wave parameters obtained from the previous study. We follow the method of probabilistic tsunami hazard analysis (PTHA) suggested by the atomic energy society of Japan (AESJ). Annual exceedance probabilities for wave height level are calculated for the site by using the information about the recurrence interval, the magnitude range, the wave parameters, the truncation of lognormal distribution of wave height, and the deviation based on the difference between simulation and record. Effects of each parameters on tsunami hazard are tested by the sensitivity analysis, which shows that the recurrence interval and the deviation dominantly affects the annual exceedance probability and the wave heigh level, respectively.

A Study on Seismic Hazard Map of Korea (한반도의 지진재해도 작성연구)

  • 김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.11-26
    • /
    • 1997
  • It has knows that the seismicity of the Korean Peninsula is relatively inactive than those of adjacent northern China and southwestern Japan. Recently the review of long term historical records and recent seismicity. In addition, it is considered that the modern society is more vulnerable to seismic hazard because of high urbanization and industrialization. From this viewpoint, the improvement and modification of the present regulation for aseismic design is strongly proposed. The purpose of the present study is to prepare seismic hazard maps for Korea to be used in improving the present regulation. The present study was performed as a cooperative project of eight Korean seismologists. Each seismologist calculated independently seismic hazard value at the given grid points based on his own judgement about methodology and seismicity. Then the values are unified with equal weight to produce a seismic hazard map. Seven seismic hazard maps for peak acceleration with 10 percentile probability of exceedance in 5, 10, 20, 50, 100, 250, 500 years are presented. This probability of exceedancd in such years corresponds to return period of 48, 95, 190, 475, 950, 2373, 4747 years, respectively. It is recommended to use a hazard map to be selected on the basis of the importance and the design level of structures.

  • PDF

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

A Comparison and Analysis of the Levee Height Determination Methods in Korea and the USA (우리나라와 미국의 제방고 산정 기법에 대한 비교 분석)

  • Kang, Tae-Uk;Lee, Sang-Ho;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.497-510
    • /
    • 2011
  • A levee height is determined by adding a deterministic freeboard to a flood water level in Korea. In the USA, a levee height is determined by choosing a value conditionally among the freeboard criteria and the levels resulted from a probabilistic method. The probabilistic method adopts a conditional non-exceedance probability (CNP) which is the probability that the target stage will not be exceeded given a specific flood event. The purpose of the study is to compare Korean criterion for levee height estimation with that of the USA. Levee heights were determined according to the above two criteria at twenty-five cross sections in five streams. The results show that Korean criterion on average yields levee heights 20 cm higher than those calculated by the criterion of the USA. The larger the flood discharges become, the higher the levee height differences are usually. It is caused by the freeboard estimation criterion of Korea that the larger design flood is, the higher freeboard is given. Korean criterion, however, resulted in lower levee heights for smaller streams than those by the criterion of the USA. To sum it up, the Korean levee height criteria can result in overestimation or underestimation depending on flood discharge amount, being compared with the criteria of the USA. The Korean freeboard especially needs to be increased for smaller flood discharges.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

A Study on Characteristics of Coastline Change in Eastern Coast Korea (한국 동해안의 변화특성)

  • 이종태
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 1979
  • This paper concerns the receding of the eastern coastline of Korean peninsula at a macroscopic point of view, the result is as following. 1. Eastern coast is gradually developed from maturity stage to full maturity stage. 2. The coastline recession due to sea level rise is amounted to the receding distance, x=0.045 m per yr. 3. The author proposes another classification from the new view point, which is classified by comparing quantities between river supplying sediment loads, and the littoral drifting due to wave actions. According this, eastern coast is receding(Type Q-A), and we could find it's geomorphological characteristics. 4. The general piofile of eastern coast sand beach is erosional storm profile(Type I) which accompany offshore bar. 5. From the wave measuring data of eastern coast(Hoopo port), I can derive the linear regression line of the exceedance probability of wave height from the log-normal distribution. $z=O. 113+4.335 log_lo H, r=0.983.$ Above equation made it possible to estimate $\omega[=P(H>H_c)]for the effective wave height H_c=2. Om4, 4. Om and their corresponding values are considerable (7.8%, 0.3%) 6. Eastern coastline certainly have the tendency of erosive and receding, owing to the sea level rise, poor sediment source and effective wave actions. It's very desirable to survey coastline evolution for a long time systematically, in order to make more elaborate diagnosis.

  • PDF

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

Determination of the Optimal Contract Amount of the Hydropower Energy Considering the Reliabilities of Reservoir Inflows (저수지(貯水池) 유입량(流入量)의 신뢰도(信賴度)를 고려한 최적(最適) 계약전력량(契約電力量)의 결정(決定))

  • Kwon, Oh Hun;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • Production of hydro-energy is random in its output amount due to the characteristics of the reservoir inflows. Therefore, it is necessary to provide the rationality in determining the amount of energy for a supply contract. This study presents a methodology for determining reasonably reliable amount of the energy supply considering the energy sale-incomes associated with the penalties which are subject to inflow-reliabilities. The objective function consists of the returns of energy sales and the risk-loss function to reflect statistically relevant risks. A range of the coefficient of the risk-loss function was figured out by its sensitivity analysis. The risk-loss herein means the penalty which should be paid by the energy supplier in case that the level of the energy supply is behind the contracted amount. And the reliability of reservoir inflow is defined by the exceedance probability of the inflow. The log-normal distribution was accepted as the probability density function of monthly inflows on the level of significance at 5%. Golden-ratio searching was applied to identify the optimal reliability and Incremental Dynamic Programming was used to maximize generation of the hydro-power energy in reservoir operation. The algorithm was the applied to the Daechung multi-purpose reservoir and hydro-power plant system in order to verify its usefulness.

  • PDF

Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information (기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.339-350
    • /
    • 2011
  • This study developed a climate informed Bayesian nonstationary frequency model which allows us to forecast seasonal summer rainfall at Nakdong River. We constructed a 37-year summer rainfall data set from 10 weather stations within Nakdong river basin, and two climate indices from sea surface temperature (SST) and outgoing longwave radiation (OLR) were derived through correlation analysis. The selected SST and OLR have been widely acknowledged as a climate driver for summer rainfall. The developed model was applied first to the 2010-year summer rainfall (888.1 mm) in order to assure ourself. We demonstrated model performance by comparing posterior distributions. It was confirmed that the proposed model is able to produce a reasonable forecast. The forecasted value is about 858.2 mm, and the difference between forecast and observation is about 30 mm. As the second case study, 2011-year summer rainfall forecast was made using an observed winter SSTs and an assumed 50% value of OLRs. The forecasted value is 967.7 mm and associated exceedance probability over average summer rainfall 680 mm is 92.9%. In addition, 50-year return period for summer rainfall was projected through the nonstationary frequency model. An exceedance probability over 1,400 mm corresponding to the 50-year return level is about 73.7%.

Correlation Analysis between Beach Width and Wave Data on the East Coast of South Korea (동해안 주요 해빈의 해빈폭과 파랑의 상관성 분석)

  • Oh, Jung-Eun;Jeong, Weon-Mu;Kim, Ki-Hyun;Kang, Tae-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.73-87
    • /
    • 2019
  • Ocean waves are the driving force for the sediment transport and the beach process. However, wave actions are nonlinear and non-stationary, and the response of the beach is inconsistent in terms of reaction rate and magnitude. Therefore, the beach process is difficult to predict accurately. The purpose of this study is to identify the correlations between the shoreline change and ocean waves observed in the east coast of Korea. The relation of the beach width obtained from video monitoring at five sandy beaches and the wave data obtained from nearby wave monitoring at three points was analyzed. Although the correlations estimated over the whole data sets was not significant, the correlations estimated based on the seasonal period or wave conditions provided more noteworthy information. When the non-exceedance probability of the wave height was greater than 0.99, the wave period and beach width showed strong negative correlations. In case the non-exceedance probability of the wave period was greater than 0.99, the wave height and beach width showed strong negative correlations as well. Furthermore, the erosion rate of the beach width increased when the primary wave direction was close to normal to the coastline. Little significant seasonal or monthly change was found between the beach width and the wave, but it was greatly affected by intensive events such as typhoons. Thus, it is necessary to analyze in detail the wave height or period level explaining the change of beach width for more relevant and practical information.