• Title/Summary/Keyword: levan

Search Result 81, Processing Time 0.023 seconds

Enzymatic Characterization of a Recombinant Levansucrase from Rahnella aquatilis ATCC 15552

  • Kim, Hyun-Jin;Park, Hae-Eun;Kim, Min-Jeong;Lee, Hyeon-Gyu;Yang, Ji-Young;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.230-235
    • /
    • 2003
  • A 1.25 kb DNA fragment including the lscR gene, which encodes a levansucrase of Rahnella aquatilis ATCC 15552, was subcloned into a high-expression vector, pET-29b, and the recombinant enzyme was overexpressed in Escherichia coli. Most of the levansucrase activity was detected in the cytoplasmic fraction after induction with isopropyl ${\beta}-D-thiogalactoside$. The recombinant enzyme with a tag of six histidine residues at the C-terminus was purified 146-fold by affinity and gel-filtration chromatographies. The molecular mass of the purified LscR was approx. 49 kDa as determined by SDS-PAGE. The optimum pH and temperature of this enzyme for levan formation was pH 6.0 and $30^{\circ}C$, respectively. The optimum substrate concentration for levan formation was 300 mM sucrose. Levan formation was increased by the increase of the enzyme concentrations. Maxium yield of levan formation at optimum substrate concentration, pH, and temperature after 24 h of reaction was approximately 80%.

Levan-Producing Bacillus subtilis BS 62 and Its Phylogeny Based on Its 16S rDNA Sequence

  • Choi, Seong-Hyun;Chang, Sung;Choi, Woo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.428-434
    • /
    • 2001
  • A viscous substance producer strain BS62, which was isolated from conventional Chungkookjang, was examined for its productivity of levansucrase and levan during soybean fermentation at $37{\circ}C$. After one day of cultivation, the enzyme activity reached the highest level, 8 units $ml^{-1}$. Extracts of fermented soybeans were precipitated by ethanol and hydrolyzed by either 0.1 N HCl or invertase, and the hydrolyzates were analyzed using thin layer and ion chromatographies. Fructose was the only sugar detected. This suggest that fructose was derived from the levan produced by the strain BS62 during soybean fermentation. The aerobic, endospore-forming bacterium BS62 was identified as a Bacillus subtilis sp., based on the composition of its cellular fatty acids and phylogeny, which was determined by its 16S rDNA sequence.

  • PDF

Controlled Rrelease of Indomethacin using Biodegradable Polymer Microspheres (생분해성 고분자 미세구를 이용한 indomethacin의 방출제어)

  • Lim, Seung;Lee, Ki-Young;Lee, Moo-Sung;Choi, Chang-Nam;Kim, Young-Dae
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.505-510
    • /
    • 2001
  • The preparation, characterization and drug release behaviour of drug(indomethacin) loaded Poly(L-lactic acid)(PLA), tarmarind acetate and levan acetate mircospheres were investigated. Hydrophobic tarmarind acetate and levan acetate were prepared by chemical modification of hydrophilic tarmaried gum and levan and microspheres were made by a solvent evaporation method. In the case of poly(L-lactic acid) microspheres, drug release rate was effected by polymer-drug ratios and drum release was sustained by increasing of polymer content. The yield of microspheres were effected by many factors and the mean size was below 1 $\mu$m, The IND release profiles from tarmarind acetate and levan acetate micropheres were more slightly less than ploy(L-lactic acid) microspheres.

  • PDF

Effects of Microbacterium laevaniformans Levans Molecular Weight on Cytotoxicity

  • Oh, Im-Kyung;Yoo, Sang-Ho;Bae, In-Young;Cha, Jae-Ho;Lee, Hyeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.985-990
    • /
    • 2004
  • Levans produced from Microbacterium laevaniformans were isolated, characterized, and fractionated by molecular weight. TLC, HPLC, and GC-MS analyses of the exopolysaccharide showed that it was a fructan-type polymer and was composed of (2,6)- and (2,1)-glycosidic linkages. $^{13}C$-NMR analysis proved that the polysaccharide was mainly a $\beta$-(2,6)-linked levan-type polysaccharide. To investigate the cytotoxicity of the acetone-precipitated levan fractions such as M1, M2, and M3, HepG2, P388D1, U937, SNU-1, and SNUC2A cell lines were screened. Among the cell lines tested, the cytotoxicity of M1- M3 fractions were detected from only SNU-1 and HepG2 cells at the dosage level of $100-800\mu\textrm{g}ml$. The M2 fraction M_r$, 80,000) at 400 $mu{g/ml}$ had the greatest cell growth inhibition (84.6%) on SNU-1, while the M1 $(M_r$, 50,000) at $800\mu\textrm{g}ml$ showed the greatest (46.32%) on HepG2. To obtain more uniform M_r$ fractions of levan, the levan was further fractionated from S1 $(M_r$ 1,000,000) to S5 $(M_r$ 10,000) using gel permeation chromatography. Again, the S1-S5 fractions had strong cytotoxicity on SNU-1 and HepG2 cell lines. The greatest inhibition effects of S4 $(M_r$ 80,000) on SNU-1 and S5 $(M_r$ 10,000) on HepG2 were shown to be 49.5% and 73.0%, respectively. The cytotoxicity of the levan fractions was more effective on SNU-1 than on HepG2. Although the relationship between the Mw and the cytotoxicity was not clear, smaller $M_r$, fractions of levan showed greater growth inhibition effect on the cancer cell lines in general. Therefore, it was indicated that a specific Mw class of levan is responsible for the effective cytotoxicity.

Purification and Characterization of an Extracellular Levansucrase from Zymomonas mobilis ZM1(ATCC 10988). (Zymomonas mobilis ZM1이 생산하는 균체외 Levansucrase의 정제 및 특성)

  • 송기방;서정우;주현규;이상기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.309-315
    • /
    • 1998
  • An extracellular levansucrase, which catalyzes the formation of levan from sucrose, from the culture broth of Zymomonas mobilis ZM1 was purified by conventional column purification methods. The final purification yield was 18.3 fold of the crude enzyme from Z. mobilis, with 16.5 % of the enzyme recovered in the preparation step. The molecular weight of the enzyme was estimated to be 91,000 by Superose 12 gel filtration, and 45,000 by SDS-PAGE, indicating that levansucrase is a dimer. The optimum pH for the enzyme activity was around pH 4.0 for sucrose hydrolysis, and was around pH 5.0 for levan formation. The enzyme was inhibited by some metal ions, such as Hg$\^$2+/ and Cu2$\^$2+/, and 50% of inhibition was observed with 5mM EDTA. The enzyme activity was enhanced by the presence of detergent Triton X-100, but inhibited by SDS completely The enzyme catalyzes the liberation of reducing sugars, oligosacccharides and the formation of fructose polymer(levan). The enzyme also catalyzes the transfructosylation reaction of fructose moiety from sucrose to various sugar acceptor molecules, including sugar alcohols.

  • PDF

Molecular Characterization of the Levansucrase Gene from Pseudomonas aurantiaca S-4380 and Its Expression in Escherichia coli

  • Jang, Eun-Kyung;Jang, Ki-Hyo;Isaac Koh;Kim, In-Hwan;Kim, Seung-Hwan;Kang, Soon-Ah;Kim, Chul-Ho;Ha, Sang-Do;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.603-609
    • /
    • 2002
  • DFA IV is di-D-fructose-2,6':6,2'-dianhydride, consisting of two fructose residues. It can be enzymatically synthesized from levan by levan fructotransferase, and can be used for mineral absorption. Understanding of the structure and composition of levan is important to obtain high-level production of DFA IV. A bacterial strain, Pseudomonas aurantiaca 5-4380, was identified to produce low-branched levan, and the levansucrase gene (lsch) from this bacterium was found to be composed of 1,275 Up coding for a protein of 424 amino acids, with an estimated molecular weight of 47 kDa. The bacterial levansucrase gene was expressed in Escherichia coli DH5${\alpha}$ by its own promoter and lac promoter. The recombinant levansucrase was produced in soluble form with 170U of levansucrase activity from 1-ml E. coii culture broth. The expressed enzyme from the clone showed similar biochemical properties, such as size of active levansucrase, degree of branching, and optimum temperature, with P.aurantiaca 5-4380 levansucrase.

Identification of catalytic acidic residues of levan fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. AL-210이 생산하는 levan fructotransferase의 효소활성에 중요한 아미노산의 동정)

  • Sung, Hee-Kyung;Moon, Keum-Ok;Choi, Ki-Won;Choi, Kyung-Hwa;Hwang, Kyung-Ju;Kim, Myo-Jung;Cha, Jae-Ho
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.6-11
    • /
    • 2007
  • [ $\beta$ ]-Fructofuranosidases, a family 32 of glycoside hydrolases (GH32), share three conserved domains including the W(L/M)(C/N)DP(Q/N), FRDPK, and ECP(D/G) motifs. The functional role of the conserved acidic residues within three domains of levan fructotransferase, one of the $\beta-fructofuranosidases$, from Microbacterium sp. AL-210 was studied by site-directed mutagenesis. Each mutant was overexpressed in E. coli BL21(DE3) and purified by using Hi-Trap chelating affinity chromatography and fast performance liquid chromatography. Substitution of Asp-63 by Ala, Asp-195 by Asn, and Glu-245 by Ala and Asp decreased the enzyme activity by approximately 100-fold compared to the wild-type enzyme. This result indicates that three acidic residues Asp-63, Asp-195, and Glu-245 play a major role in catalysis. Since the three acidic residues are present in a conserved position in inulinase, levanase, levanfructotransferase, and invertase, they are likely to have a common functional role as nucleophile, transition state stabilizer, and general acid in $\beta-fructofuranosidases$.

Characterization of Formation of Fructose during Acid Hydrolysis and Enzyme Treatment of Fructose Saccharides (과당 탄수화물의 산가수 및 효소적 분해 특성연구)

  • Kang, Soon-Ah;Lee, Eun-Young;Jung, Sung-Je;Kim, Sang-Moo;Lee, Jae-Cheol;Jang, Ki-Hyo
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Acid- and enzymatic hydrolysis properties of two fructans(inulin and levan) and their oligofructoses has been investigated. At pH 1, the initial fructose release rate differs and is rapidly hydrolyzed in the order of levan oligosaccharide and inulin oligosaccharide, levan, inulin. At pH 4.5, 7 and 14, no or little amount of fructose are found from four samples. At the presence of inulinase in the reaction mixture, the fructose is rapidly produced from all samples, whilst invertase treatments show low activities. The results allow the estimation of the fructose release rate in many foodstuff processing conditions.

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. A-210이 생성하는 Levan fructotransferase의 정제 및 생물학적 특성에 관한 연구)

  • Hwang, Eun-Young;Jeong, Mi-Suk;Cha, Jae-Ho;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1218-1225
    • /
    • 2009
  • Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.