• 제목/요약/키워드: lettuce imaging

검색결과 5건 처리시간 0.01초

초분광 반사광 영상을 이용한 상추(Lactuca sativa L) 종자의 활력 비파괴측정기술 개발에 관한 연구 (Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging)

  • 안치국;조병관;모창연
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.518-525
    • /
    • 2012
  • 본 연구에서는 초분광 반사광 영상기술을 이용하여 비파괴적으로 상추의 건전종자와 퇴화종자를 선별하는 기술을 개발하고자 하였다. 750~1000nm의 근적외선 초분광 반사광 영상의 분광데이터를 이용하여 상추의 발아종자와 불발아 종자를 판별하는 PLS-DA 모델을 개발하고 개발된 모델의 성능 평가를 실시하였다. 모델 calibration의 판별 정확도는 81.6%였으며, test의 결과는 81.2%의 판별 정확도를 보였다. 또한 개발된 PLS-DA 모델을 적용한 초분광 반사광 영상을 이용하여 대량의 불발아 종자를 동시에 영상으로 검출 가능한 영상처리 알고리즘을 개발하였다. 초분광 반사광 영상에 PLS-DA 모델이 적용된 영상을 이용한 검출 정확도는 91%로 나타났으며, 이는 초분광 반사광 영상을 이용하여 대량의 상추 종자의 비파괴 품질선별에 이용될 수 있음을 보여 주었다.

영상정보를 이용한 자동화 온실에서의 작물 성장 상태 파악에 관한 연구 (Identification of Crop Growth Stage by Image Processing for Greenhouse Automation)

  • 김기영;류관희;전성필
    • Journal of Biosystems Engineering
    • /
    • 제24권1호
    • /
    • pp.25-30
    • /
    • 1999
  • The effectiveness of many greenhouse environment control methodologies depends on the growth information of crops. Acquisition of the growth information of crops requires a non-invasive and continuous monitoring method. Crop growth monitoring system using digital imaging technique was developed to conduct non-destructive and intact plant growth analyses. The monitoring system automatically measures crop growth information sends an appropriate control signal to the nutrient solution supplying system. To develop the monitoring system, a linear model that explains the relationship between the fresh weight and the top projected leaf area of a lettuce plant was developed from an experiment. The monitoring system was evaluated buy successive lettuce growing experiments. Results of the experiments showed that the developed system could estimate the fresh weight of lettuce from a lettuce image by using the linear model and generate an EC control signal according to the lettuce growth stage.

  • PDF

열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석 (Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF

열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석- (Plant Growth Monitoring Using Thermography -Analysis of nutrient stress-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교 (Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction)

  • 송지수;김동석;김효성;정은지;황현정;박재성
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.434-441
    • /
    • 2023
  • 식물의 잎의 크기나 면적을 아는 것은 생장을 예측하고 실내 농장의 생산성의 향상에 중요한 요소이다. 본 연구에서는 상추 잎 사진을 이용해 엽장과 엽폭을 예측할 수 있는 CNN기반 모델을 연구하였다. 데이터의 한계와 과적합 문제를 극복하기 위해 콜백 함수를 적용하고, 모델의 일반화 능력을 향상시키기 위해 K겹교차 검증을 사용했다. 또한 데이터 증강을 통한 학습데이터의 다양성을 높이기 위해 image generator를 사용하였다. 모델 성능을 비교하기 위해 VGG16, Resnet152, NASNetMobile 등 사전학습된 모델을 이용하였다. 그 결과 너비 예측에서 R2 값0.9436, RMSE 0.5659를 기록한 NASNetMobile이 가장 높은 성능을 보였으며 길이 예측에서는 R2 값이 0.9537, RMSE가 0.8713로 나타났다. 최종 모델에는 NASNetMobile 아키텍처, RMSprop 옵티마이저, MSE 손실 함수, ELU 활성화함수가 사용되었다. 모델의 학습 시간은 Epoch당평균73분이 소요되었으며, 상추 잎 사진 한 장을 처리하는 데 평균0.29초가 걸렸다. 본 연구는 실내 농장에서 식물의 엽장과 엽폭을 예측하는 CNN 기반 모델을 개발하였고 이를 통해 단순한 이미지 촬영만으로도 식물의 생장 상태를 신속하고 정확하게 평가할 수 있을 것으로 기대된다. 또한 그 결과는 실시간 양액 조절 등의 적절한 농작업 조치를 하는데 활용됨으로써 농장의 생산성 향상과 자원 효율성을 향상시키는데 기여할 것이다.