• 제목/요약/키워드: lentivirus vector

검색결과 20건 처리시간 0.026초

HIV-l 유래 렌티바이러스 벡터의 복제가능 바이러스 검출과 역가측정 분석방법 비교 (Comparison of Analysis Methods for Detection of Replication Competent Virus and Functional Titers of HIV-l Based Lentivirus Vector)

  • 장석기;오일웅;정자영;안광수;손여원
    • 약학회지
    • /
    • 제49권3호
    • /
    • pp.217-224
    • /
    • 2005
  • Human Immunodeficiency Virus type 1 (HIV-l) based lentivirus vector has demonstrated great potential as gene therapy vectors mediating efficient gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be confirmed that vector preparations are safe and not contaminated by replication competent lentivirus (RCL) related to the parental pathogenic virus, HIV-l. In this study, we would like to establish the method for titration and RCL detection of lentivirus vector. The titration was determined by vector expression containing the green fluorescent protein, GFP in transduced cells. The titer was $1{\times}10^7$ Transducing Unit/ml in the GFP expression assay and $8.9{\times}10^7$ molecules/ml in the real-time PCR. Also, for the detection of RCL, we have used a combination method of PCR and p24 antigen detection. First, PBS/psi and VSV-G region in the genomic DNA of transduced cells was detected by PCR assay. Second, transfer and expression of the HIV-1 gag gene was detected by p24 ELISA. In an attempt to amplify any RCL, the transduced cells were cultured for 3 weeks (amplification phase) and the supernatant of amplified transduced cell was used for the second transduction to determine whether a true RCL was present (indicator phase). Analysis of cells and supernatant at day 6 in indicator phase were negative for PBS/psi, VSV-G, and p24 antigen. These results suggest that they are not mobilized and therefore there are no RCL in amplification phase. Thus, real-time PCR is a reliable and sensitive method for titration and RCL detection of lentivirus vector.

Lentivirus-mediated Gene Transfer to Bovine Embryos

  • Kim, Young-Mi;Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teo-An;Yom, Heng-Cherl;Ko, Dae-Hwan
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.15-20
    • /
    • 2008
  • Pronuclear DNA microinjection has been the most universal method in transgenic animal production but its success rate of transgenesis in mammals are extremely low. To address this long-standing problem, we used retrovirus- and lentivirus-based vectors carrying the enhanced green fluorescent protein (EGFP) gene under the control of ubiquitously active cytomegalovirus (CMV) promoter to deliver transgenes to bovine embryos. The rate of transgenesis was evaluated by counting EGFP positive blastocysts after injection of concentrated virus stock into the perivitelline space of the bovine oocytes in metaphase II. Among two different types of lentivirus vectors derived from FIV (feline immunodeficiency virus) and HIV (human immunodeficiency virus), the former scored the higher gene transfer efficiency; almost 100% of the blastocysts developed from the oocytes infected with FIV-based vector were EGFP positive. As for the vectors derived Com HIV lentivirus, the transgenesis rate of the blastocysts was reduced to 39%.

Development of Genetically Modified Tumor Cell Containing Co-stimulatory Molecule

  • Kim, Hong Sung
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.398-406
    • /
    • 2019
  • Cancer immunotherapy using gene-modified tumor cells is safe and customized cancer treatment method. In this study, we made gene-modified tumor cells by transferring costimulatory molecules, 4-1BBL and OX40L, into tumor cells using lentivirus vector, and identified anti-cancer effect of gene-modified tumor cells in CT26 mouse colorectal tumor model. We construct pLVX-puro-4-1BBL, -OX40L vector for lentivirus production and optimized the transfection efficiency and transduction efficiency. The transfection efficiency is maximal at DNA:cationic polymer = 1:0.5 and DNA 2 ㎍ for lentivirus production. Then, the lentiviral including 4-1BBL and OX40L was used to deliver CT26 mouse tumor cells to establish optimal delivery conditions according to the amount of virus. The transduction efficiency is maximal at 500 μL volume of lentiviral stock without change in cell shape or growth rate. CT26-4-1BBL, CT26-OX40L significantly inhibited the tumor growth compare with CT26-WT or CT26-β-gal cell line. These data showed the possibility the use of genetically modified tumor cells with costimulatory molecule as cancer immunotherapy agent.

Antitumor Activity of Lentivirus-mediated Interleukin -12 Gene Modified Dendritic Cells in Human Lung Cancer in Vitro

  • Ali, Hassan Abdellah Ahmed;Di, Jun;Mei, Wu;Zhang, Yu-Cheng;Li, Yi;Du, Zhen-Wu;Zhang, Gui-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.611-616
    • /
    • 2014
  • Objectives: Dendritic cell (DC)-based tumor immunotherapy needs an immunogenic tumor associated antigen (TAA) and an effective approach for its presentation to lymphocytes. In this study we explored whether transduction of DCs with lentiviruses (LVs) expressing the human interleukin-12 gene could stimulate antigen-specific cytotoxic T cells (CTLs) against human lung cancer cells in vitro. Methods: Peripheral blood monocyte-derived DCs were transduced with a lentiviral vector encoding human IL-12 gene (LV-12). The anticipated target of the human IL-12 gene was detected by RT-PCR. The concentration of IL-12 in the culture supernatant of DCs was measured by ELISA.Transduction efficiencies and CD83 phenotypes of DCs were assessed by flow cytometry. DCs were pulsed with tumor antigen of lung cancer cells (DC+Ag) and transduced with LV-12 (DC-LV-12+Ag). Stimulation of T lymphocyte proliferation by DCs and activation of cytotoxic T-lymphocytes (CTL) stimulated by LV-12 transduced DCs pulsed with tumor antigen against A549 lung cancer cells were assessed with methyl thiazolyltetrazolium (MTT). Results: A recombinant lentivirus expressing the IL-12 gene was successfully constructed. DC transduced with LV-12 produced higher levels of IL-12 and expressed higher levels of CD83 than non-transduced. The DC modified by interleukin -12 gene and pulsed with tumor antigen demonstrated good stimulation of lymphocyte proliferation, induction of antigen-specific cytotoxic T lymphocytes and antitumor effects. Conclusions: Dendritic cells transduced with a lentivirus-mediated interleukin-12 gene have an enhanced ability to kill lung cancer cells through promoting T lymphocyte proliferation and cytotoxicity.

Lentivirus Mediated GOLPH3 shRNA Inhibits Growth and Metastasis of Esophageal Squamous Cancer

  • Wang, Qiang;Wang, Xian;Zhang, Can-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5391-5396
    • /
    • 2013
  • Aim: To investigate the role of Golgi phosphoprotein 3 (GOLPH3) in tumour growth and metastasis of esophageal squamous cancer. Methods: A lentiviral shRNA-vector was utilized to stably knockdown GOLPH3 in Eca-109 esophageal squamous cancer cells. mRNA transcription and protein expression of GOLPH3 were examined by real-time quantitative PCR and Western blotting, respectively. Cell proliferation activity was assessed by MTT assay and invasion and migration potentials by matrigel invasion and transwell motility assays. Results: Stable knockdown in the GOLPH3 cell line was established. PD-A gene expression was significantly suppressed by lentivirus-mediated RNAi, which resulted in reducing the capacity for cell proliferation, migration, invasion and adhesion in vitro. In vivo, GOLPH3 depletion resulted in inhibition of tumour growth, with stable decrease in the expression of GOLPH3 in tumor xenografts. Conclusions: Our findings suggest that lentivirus mediated silencing of the GOLPH3 gene has a significant anti-tumour effect on esophageal squamous cancer in vitro and in vivo. In addition, the results indicate that GOLPH3 might be an effective molecular target for gene therapy in esophageal squamous cancer.

Long-Term Expression of von Willebrand Factor by a VSV-G Pseudotyped Lentivirus Enhances the Functional Activity of Secreted B-Domain-deleted Coagulation Factor VIII

  • Park, Sang Won;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.125-131
    • /
    • 2007
  • von Willebrand factor (vWF) is a multimeric glycoprotein which functions within the coagulation system. It colocalizes with factor VIII (FVIII) by non-covalent interaction and alters its intracellular trafficking. vWF is also instrumental in maintaining the stability of secreted FVIII. The principal objective of this study was to generate a lentivirus-based vWF expression vector for gene therapy of hemophilia A. We inserted a vWF of 8.8 Kb into a lentiviral vector thereby producing VSV-G-pseudotyped vEx52. However, its titer was quite low, presumably because the length of vWF gene exceeds the size limit of the lentiviral vector. In order to overcome the low-titer, we concentrated the vEx52 and thus increased the efficiency of transduction approximately 6-fold with $1/100^{th}$ of the volume. However, as concentration requires an additional laborious step, we attempted to enhance the transduction efficiency by deleting exons 24-46 and 29-46 in pRex52 to construct pRex23 and pRex28, and in pvEx52, yielding pvEx23 and pvEx28, respectively. The transfected pRex52 had a profound effect on the activity of secreted FVIII, and this activity declined as domains of vWF were deleted. However, when the domain-deleted vWF-lentiviruses were transduced into K562 cells, the vEx28 increased the activity of the secreted FVIII compared to what was observed with vEx52. This result is probably due to higher efficiencies of transduction and expression while retaining the essential domains required for proper interaction with FVIII.

Lentivirus System을 이용한 Glucocorticoid 유도 Reporter 유전자 발현의 분석 (In vitro Analysis of Glucocorticoid-induced Reporter Gene Expression Using Lentivirus System)

  • 이미숙;김지연;허송욱
    • 한국해양바이오학회지
    • /
    • 제2권2호
    • /
    • pp.81-85
    • /
    • 2007
  • 글루코코르티코이드의 다양한 생리학적 과정은 이 호르몬에 의해 활성화된 수용체가 표적 유전자의 전사를 촉진 혹은 억제시킴으로써 일어나게 된다. 본 논문은 렌티바이러스 리포터 시스템을 이용하여 글루코코르티코이드 호르몬에 의한 GR 활성을 핵내에서 GRE에 의해 유도된 리포터 단백질인 mRFP 또는 루시퍼라아제의 발현을 통해 정성, 정량화 하였다. 그 결과 GR이 endogenous 하게 발현되는 HeLa 세포에서 코티졸을 처리하였을 때 활성화된 GR에 의해 GRE-inducible한 RFP와 루시퍼라아제의 발현이 각각 공초점 형광 현미경과 IVIS-200을 이용하여 형광 또는 BLI을 통해 증가함을 확인하였다. 이러한 결과를 통해 렌티바이러스 리포터 시스템을 이용한 연구는 세포 내에서 뿐 만 아니라 향후 생체내에서의 GR signaling을 모니터링하는데 유용하게 사용되어질 수 있을 것이다.

  • PDF

FIV-Tet-On Vector System을 이용한 hG-CSF 유전자의 효율적인 발현 조절 (Efficient Control of Human G-CSF Gene Expression in the Primary Culture Cell using a FIV-Tet-On Vector System)

  • 권모선;구본철;김태완
    • Reproductive and Developmental Biology
    • /
    • 제31권3호
    • /
    • pp.153-159
    • /
    • 2007
  • 본 연구에서: hG-CSF의 발현을 유도적으로 조절하기 위한 FIV-Tet-On lentivirus vector system을 구축하고자 하였다. hG-CSF는 호중성구 계열 세포의 증식과 분화, 생존에 영향을 미치는 물질로서, 이 유전자의 발현을 증가시키기 위하여 FIV-Tet-On vector 상의 hG-CSF나 $rtTA2^SM2$ 서열의 3' 위치에 WPRE 서열을 도입하였다. 구축된 각각의 vector는 293FT 세포에 일시적으로 transfection하여 virus를 생산하였으며, 이 virus를 일차 배양 세포인 CEF와 PFF에 감염시켰다. 각 세포에 전이되 hG-CSF의 발현 양상을 관찰하기 위하여 doxycycline을 첨가하거나 첨가하지 않은 배지에서 배양한 후 quantitative real-time PCR, Western blot과 ELISA를 이용하여 hG-CSF 유전자의 발현 정도를 비교 측정한 결과, CEF에서는 WPRE가 hG-CSF의 3' 위치에 도입된 경우에 발현량과 유도율이 가장 높은 것으로 나타났고, PFF에서는 rtTA 서열의 3'위치에 도입된 경우에 발현량과 유도율이 가장 큰 것으로 확인되었다. 이 FIV-Tet-On vector system은 형질 전환 동물의 생산이나 유전자 치료에서 문제시되는 외래 유전자의 지속적인 과다 발현에 의한 개체의 생리적인 부작용을 최소화하기 위한 해결 방법으로 제시될 수 있을 것이다.

Lentivirus-mediated shRNA Interference Targeting SLUG Inhibits Lung Cancer Growth and Metastasis

  • Wang, Yao-Peng;Wang, Ming-Zhao;Luo, Yi-Ren;Shen, Yi;Wei, Zhao-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.4947-4951
    • /
    • 2012
  • Objective: Lung cancer is a deadly cancer, whose kills more people worldwide than any other malignancy. SLUG (SNAI2, Snail2) is involved in the epithelial mesenchymal transition in physiological and in pathological contexts and is implicated in the development and progression of lung cancer. Methods: We constructed a lentivirus vector with SLUG shRNA (LV-shSLUG). LV-shSLUG and a control lentivirus were infected into the non-small cell lung cancer cell A549 and real-time PCR, Western blot and IHC were applied to assess expression of the SLUG gene. Cell proliferation and migration were detected using MTT and clony formation methods. Results: Real-time PCR, Western Blot and IHC results confirmed down-regulation of SLUG expression by its shRNA by about 80%~90% at both the mRNA and protein levels. Knockdown of SLUG significantly suppressed lung cancer cell proliferation. Furthermore, knockdown of SLUG significantly inhibited lung cancer cell invasion and metastasis. Finally, knockdown of SLUG induced the down-regulation of Bcl-2 and up-regulation of E-cadherin. Conclusion: These results indicate that SLUG is a newly identified gene associated with lung cancer growth and metastasis. SLUG may serve as a new therapeutic target for the treatment of lung cancer in the future.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.