• 제목/요약/키워드: lentiviral vector

검색결과 22건 처리시간 0.019초

Expression of Exogenous Human Hepatic Nuclear Factor-$1{\alpha}$ by a Lentiviral Vector and Its Interactions with Plasmodium falciparum Subtilisin-Like Protease 2

  • Liao, Shunyao;Liu, Yunqiang;Zheng, Bing;Cho, Pyo-Yun;Song, Hyun-Ok;Lee, Yun-Seok;Jung, Suk-Yul;Park, Hyun
    • Parasites, Hosts and Diseases
    • /
    • 제49권4호
    • /
    • pp.431-436
    • /
    • 2011
  • The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-$1{\alpha}$ is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-$1{\alpha}$ in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-$1{\alpha}$ expressed by a lentiviral vector (LV HNF-$1{\alpha}$) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-$1{\alpha}$ was observed to influence promoter activity, suggesting that host HNF-$1{\alpha}$ interacts with the Sub2 gene.

Development of Genetically Modified Tumor Cell Containing Co-stimulatory Molecule

  • Kim, Hong Sung
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.398-406
    • /
    • 2019
  • Cancer immunotherapy using gene-modified tumor cells is safe and customized cancer treatment method. In this study, we made gene-modified tumor cells by transferring costimulatory molecules, 4-1BBL and OX40L, into tumor cells using lentivirus vector, and identified anti-cancer effect of gene-modified tumor cells in CT26 mouse colorectal tumor model. We construct pLVX-puro-4-1BBL, -OX40L vector for lentivirus production and optimized the transfection efficiency and transduction efficiency. The transfection efficiency is maximal at DNA:cationic polymer = 1:0.5 and DNA 2 ㎍ for lentivirus production. Then, the lentiviral including 4-1BBL and OX40L was used to deliver CT26 mouse tumor cells to establish optimal delivery conditions according to the amount of virus. The transduction efficiency is maximal at 500 μL volume of lentiviral stock without change in cell shape or growth rate. CT26-4-1BBL, CT26-OX40L significantly inhibited the tumor growth compare with CT26-WT or CT26-β-gal cell line. These data showed the possibility the use of genetically modified tumor cells with costimulatory molecule as cancer immunotherapy agent.

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

Long-Term Expression of von Willebrand Factor by a VSV-G Pseudotyped Lentivirus Enhances the Functional Activity of Secreted B-Domain-deleted Coagulation Factor VIII

  • Park, Sang Won;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.125-131
    • /
    • 2007
  • von Willebrand factor (vWF) is a multimeric glycoprotein which functions within the coagulation system. It colocalizes with factor VIII (FVIII) by non-covalent interaction and alters its intracellular trafficking. vWF is also instrumental in maintaining the stability of secreted FVIII. The principal objective of this study was to generate a lentivirus-based vWF expression vector for gene therapy of hemophilia A. We inserted a vWF of 8.8 Kb into a lentiviral vector thereby producing VSV-G-pseudotyped vEx52. However, its titer was quite low, presumably because the length of vWF gene exceeds the size limit of the lentiviral vector. In order to overcome the low-titer, we concentrated the vEx52 and thus increased the efficiency of transduction approximately 6-fold with $1/100^{th}$ of the volume. However, as concentration requires an additional laborious step, we attempted to enhance the transduction efficiency by deleting exons 24-46 and 29-46 in pRex52 to construct pRex23 and pRex28, and in pvEx52, yielding pvEx23 and pvEx28, respectively. The transfected pRex52 had a profound effect on the activity of secreted FVIII, and this activity declined as domains of vWF were deleted. However, when the domain-deleted vWF-lentiviruses were transduced into K562 cells, the vEx28 increased the activity of the secreted FVIII compared to what was observed with vEx52. This result is probably due to higher efficiencies of transduction and expression while retaining the essential domains required for proper interaction with FVIII.

Novel Therapeutic Approaches to Mucopolysaccharidosis Type III

  • Yang, Aram
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제5권1호
    • /
    • pp.22-28
    • /
    • 2021
  • Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan-inherited lysosomal storage disease. It is one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterized by intellectual regression, behavioral and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has been approved. Here, we review the curative therapy developed for MPS III, from historically ineffective hematopoietic stem cell transplantation and substrate reduction therapy to the promising enzyme replacement therapy or adeno-associated/lentiviral vector-mediated gene therapy. Preclinical studies are presented with recent translational first-in-man trials. We also present experimental research with preclinical mRNA and gene-editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of early therapy before extensive neuronal loss. Disease-modifying therapy for MPS III will likely mandate the development of new early diagnosis strategies.

Lentivirus Mediated GOLPH3 shRNA Inhibits Growth and Metastasis of Esophageal Squamous Cancer

  • Wang, Qiang;Wang, Xian;Zhang, Can-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5391-5396
    • /
    • 2013
  • Aim: To investigate the role of Golgi phosphoprotein 3 (GOLPH3) in tumour growth and metastasis of esophageal squamous cancer. Methods: A lentiviral shRNA-vector was utilized to stably knockdown GOLPH3 in Eca-109 esophageal squamous cancer cells. mRNA transcription and protein expression of GOLPH3 were examined by real-time quantitative PCR and Western blotting, respectively. Cell proliferation activity was assessed by MTT assay and invasion and migration potentials by matrigel invasion and transwell motility assays. Results: Stable knockdown in the GOLPH3 cell line was established. PD-A gene expression was significantly suppressed by lentivirus-mediated RNAi, which resulted in reducing the capacity for cell proliferation, migration, invasion and adhesion in vitro. In vivo, GOLPH3 depletion resulted in inhibition of tumour growth, with stable decrease in the expression of GOLPH3 in tumor xenografts. Conclusions: Our findings suggest that lentivirus mediated silencing of the GOLPH3 gene has a significant anti-tumour effect on esophageal squamous cancer in vitro and in vivo. In addition, the results indicate that GOLPH3 might be an effective molecular target for gene therapy in esophageal squamous cancer.

Antitumor Activity of Lentivirus-mediated Interleukin -12 Gene Modified Dendritic Cells in Human Lung Cancer in Vitro

  • Ali, Hassan Abdellah Ahmed;Di, Jun;Mei, Wu;Zhang, Yu-Cheng;Li, Yi;Du, Zhen-Wu;Zhang, Gui-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.611-616
    • /
    • 2014
  • Objectives: Dendritic cell (DC)-based tumor immunotherapy needs an immunogenic tumor associated antigen (TAA) and an effective approach for its presentation to lymphocytes. In this study we explored whether transduction of DCs with lentiviruses (LVs) expressing the human interleukin-12 gene could stimulate antigen-specific cytotoxic T cells (CTLs) against human lung cancer cells in vitro. Methods: Peripheral blood monocyte-derived DCs were transduced with a lentiviral vector encoding human IL-12 gene (LV-12). The anticipated target of the human IL-12 gene was detected by RT-PCR. The concentration of IL-12 in the culture supernatant of DCs was measured by ELISA.Transduction efficiencies and CD83 phenotypes of DCs were assessed by flow cytometry. DCs were pulsed with tumor antigen of lung cancer cells (DC+Ag) and transduced with LV-12 (DC-LV-12+Ag). Stimulation of T lymphocyte proliferation by DCs and activation of cytotoxic T-lymphocytes (CTL) stimulated by LV-12 transduced DCs pulsed with tumor antigen against A549 lung cancer cells were assessed with methyl thiazolyltetrazolium (MTT). Results: A recombinant lentivirus expressing the IL-12 gene was successfully constructed. DC transduced with LV-12 produced higher levels of IL-12 and expressed higher levels of CD83 than non-transduced. The DC modified by interleukin -12 gene and pulsed with tumor antigen demonstrated good stimulation of lymphocyte proliferation, induction of antigen-specific cytotoxic T lymphocytes and antitumor effects. Conclusions: Dendritic cells transduced with a lentivirus-mediated interleukin-12 gene have an enhanced ability to kill lung cancer cells through promoting T lymphocyte proliferation and cytotoxicity.

사람의 SOD-3 단백질을 발현하는 형질전환 닭 생산 연구 (A Study of the Generation of Transgenic Chickens That Express Human SOD-3 Protein)

  • 변승준;박철;김진아;우제석;이휘철;김태윤;김상훈;성환후;박진기;전익수
    • 한국가금학회지
    • /
    • 제35권3호
    • /
    • pp.241-245
    • /
    • 2008
  • 형질 전환 닭 생산 방법들 가운데 목적 유전자 운반에 탁월한 능력이 있는 것으로 알려진 렌티바이러스는 배반엽 단계 수정란을 이용한 형질 전환 닭 생산 연구에 활발하게 이용되고 있다. 본 연구는 재조합 렌티바이러스를 이용하여 사람의 SOD-3 단백질이 닭의 ovalbumin 프로모터에 의해서 유도되는 형질 전환 닭을 생산하고자 하였다. 사람의 SOD-3 단백질은 호흡 과정에서 체내에서 생성되는 활성산소를 중화시키는 탁월한 기능이 있는 것으로 알려져 있다. 후보 병아리의 생산은 앞서 언급한 유전자를 가지는 $1{\times}10^6$ cfu/mL 재조합 렌티바이러스를 배반엽 단계 수정란의 미세 주입하고 대리난각 배양법을 이용하여 배양기에서 21일 동안 배양하는 방법으로 생산하였다. 유전자를 미세주입한 341개의 수정란에서 78수의 후보 형질 전환 병아리를 생산하였으며, 생산된 후보 형질 전환 병아리들의 유전 분석은 PCR 방법을 이용하여 검증하였다. 유전 분석 결과는 성 성숙에 이른 47수의 수컷들 가운데 2수의 정액에서 사람의 SOD-3 유전자가 존재함을 보였다. 이상의 연구 결과는 완전한 형태의 형질전환 닭 생산의 가능성을 보여주고 있다.

Down-regulation of SENP1 Expression Increases Apoptosis of Burkitt Lymphoma Cells

  • Huang, Bin-Bin;Gao, Qing-Mei;Liang, Wei;Xiu, Bing;Zhang, Wen-Jun;Liang, Ai-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2045-2049
    • /
    • 2012
  • Objective: To investigate the effect of down-regulation of Sentrin/SUMO-specific protease 1 (SENP1) expression on the apoptosis of human Burkitt lymphoma cells (Daudi cells) and potential mechanisms. Methods: Short hairpin RNA (shRNA) targeting SENP1 was designed and synthesized and then cloned into a lentiviral vector. A lentiviral packaging plasmid was used to transfect Daudi cells (sh-SENP1-Daudi group). Daudi cells without transfection (Daudi group) and Daudi cells transfected with blank plasmid (sh-NC-Daudi group) served as control groups. Flow cytometry was performed to screen GFP positive cells and semiquantitative PCR and Western blot assays were employed to detect the inference efficiency. The morphology of cells was observed under a microscope before and after transfection. Fluorescence quantitative PCR and Western blot assays were conducted to measure the mRNA and protein expression of apoptosis related molecules (caspase-3, 8 and 9). After treatment with $COCl_2$ for 24 h, the mRNA and protein expression of hypoxia inducible factor -$1{\alpha}$ (HIF-$1{\alpha}$) was determined. Results: Sequencing showed the expression vectors of shRNA targeting SENP1 to be successfully constructed. Following screening of GFP positive cells by FCM, semiqualitative PCR showed the interference efficiency was $79.2{\pm}0.026%$. At 48 h after transfection, the Daudi cells became shrunken, had irregular edges and presented apoptotic bodies. Western blot assay revealed increase in expression of caspase-3, 8 and 9 with prolongation of transfection (P<0.05). Following hypoxia treatment, mRNA expression of HIF-$1{\alpha}$ remained unchanged in three groups (P>0.05) but the protein expression of HIF-$1{\alpha}$ markedly increased (P<0.05). However, in the sh-SENP1-Daudi group, the protein expression of HIF-$1{\alpha}$ remained unchanged Conclusion: SENP1-shRNA can efficiently inhibit SENP1 expression in Daudi cells. SENP1 inhibition may promote cell apoptosis. These findings suggest that SENP1 may serve as an important target in the gene therapy of Burkitts lymphoma.

New Therapeutic Schedule for Prostatic Cancer-3 Cells with ET-1 RNAi and Endostar

  • Zhang, Hao-Jie;Qian, Wei-Qing;Chen, Ran;Sun, Zhong-Quan;Song, Jian-Da;Sheng, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10079-10083
    • /
    • 2015
  • Background: Endothelin-1 and Endostar are both significant for the progression, proliferation, metastasis and invasion of cancer. In this paper, we studied the effect of ET-1 RNAi and Endostar in PC-3 prostatic cancer cells. Materials and Methods: The lentiviral vector was used in the establishment of ET-1 knockdown PC-3 cells. Progression and apoptosis were assessed by CKK-8 and flow cytometry, respectively. Transwell assay was used to estimate invasion and signaling pathways were studied by Western blotting. Results: ET-1 mRNA and protein in ET-1 knockdown PC-3 cells were reduced to 26.4% and 22.4% compared with control group, respectively. ET-1 RNAi and Endostar both were effective for the suppression of progression and invasion of PC-3 cells. From Western blotting results, the effects of ET-1 regulation and Endostar on PC-3 cells were at least related to some signaling pathways involving PI3K/Akt/Caspase-3, Erk1/2/Bcl-2/Caspase-3 and MMPs (MMP-2 and MMP-9). Furthermore, combined treatment of ET-1RNAi and Endostar was found to be more effective than single treatment. Conclusions: Both ET-1 RNAi and Endostar can inhibit the progression and invasion of PC-3 cells, but combined treatment might be a better therapeutic schedule.