DOI QR코드

DOI QR Code

Expression of Exogenous Human Hepatic Nuclear Factor-$1{\alpha}$ by a Lentiviral Vector and Its Interactions with Plasmodium falciparum Subtilisin-Like Protease 2

  • Liao, Shunyao (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine) ;
  • Liu, Yunqiang (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine) ;
  • Zheng, Bing (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine) ;
  • Cho, Pyo-Yun (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine) ;
  • Song, Hyun-Ok (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine) ;
  • Lee, Yun-Seok (Department of Health Administration, Namseoul University) ;
  • Jung, Suk-Yul (Department of Biomedical Laboratory Science, Molecular Diagnosis Research Institute, Namseoul University) ;
  • Park, Hyun (Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine)
  • Received : 2011.06.19
  • Accepted : 2011.09.01
  • Published : 2011.12.15

Abstract

The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-$1{\alpha}$ is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-$1{\alpha}$ in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-$1{\alpha}$ expressed by a lentiviral vector (LV HNF-$1{\alpha}$) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-$1{\alpha}$ was observed to influence promoter activity, suggesting that host HNF-$1{\alpha}$ interacts with the Sub2 gene.

Keywords

References

  1. Kooij TW, Janse CJ, Waters AP. Plasmodium post-genomics: better the bug you know? Nat Rev Microbiol 2006; 4: 344-357. https://doi.org/10.1038/nrmicro1392
  2. Fortin A, Stevenson MM, Gros P. Complex genetic control of susceptibility to malaria in mice. Genes Immun 2002; 3: 177-186. https://doi.org/10.1038/sj.gene.6363841
  3. Griffith JW, O'Connor C, Bernard K, Town T, Goldstein DR, Bucala R. Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 2007; 196: 1553-1564. https://doi.org/10.1086/522865
  4. Millington OR, Gibson VB, Rush CM, Zinselmeyer BH, Phillips RS, Garside P, Brewer JM. Malaria impairs T cell clustering and immune priming despite normal signal 1 from dendritic cells. PLoS Pathog 2007; 3: 1380-1387.
  5. Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM, Gros P. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med 2007; 204: 511-524. https://doi.org/10.1084/jem.20061252
  6. Burt RA. Genetics of host response to malaria. Int J Parasitol 1999; 29: 973-979. https://doi.org/10.1016/S0020-7519(99)00054-5
  7. Mikolajczak SA, Kappe SH. A clash to conquer: The malaria parasite liver infection. Mol Microbiol 2006; 62: 1499-1506. https://doi.org/10.1111/j.1365-2958.2006.05470.x
  8. Morosan S, Hez-Deroubaix S, Lunel F, Renia L, Giannini C, Van Rooijen N, Battaglia S, Blanc C, Eling W, Sauerwein R, Hannoun L, Belghiti J, Brechot C, Kremsdorf D, Druilhe P. Liver-stage development of Plasmodium falciparum, in a humanized mouse model. J Infect Dis 2006; 193: 996-1004. https://doi.org/10.1086/500840
  9. Prudencio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: The Plasmodium liver stage. Nat Rev Microbiol 2006; 4: 849-856. https://doi.org/10.1038/nrmicro1529
  10. Carrolo M, Giordano S, Cabrita-Santos L, Corso S, Vigario AM, Silva S, Leiriao P, Carapau D, Armas-Portela R, Comoglio PM, Rodriguez A, Mota MM. Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 2003; 9: 1363-1369. https://doi.org/10.1038/nm947
  11. Adachi K, Tsutsui H, Kashiwamura S, Seki E, Nakano H, Takeuchi O, Takeda K, Okumura K, Van Kaer L, Okamura H, Akira S, Nakanishi K. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J Immunol 2001; 167: 5928-5934. https://doi.org/10.4049/jimmunol.167.10.5928
  12. Joshi YK, Tandon BN, Acharya SK, Babu S, Tandon M. Acute hepatic failure due to Plasmodium falciparum liver injury. Liver 1986; 6: 357-360.
  13. Yoshimoto T, Takahama Y, Wang CR, Yoneto T, Waki S, Nariuchi H. A pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK65 infection. J Immunol 1998; 160: 5500-5505.
  14. Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev 2006; 20: 2293-2305. https://doi.org/10.1101/gad.390906
  15. Cerf ME. Transcription factors regulating beta-cell function. Eur J Endocrinol 2006; 155: 671-679. https://doi.org/10.1530/eje.1.02277
  16. Gautier-Stein A, Zitoun C, Lalli E, Mithieux G, Rajas F. Transcriptional regulation of the glucose-6-phosphatase gene by cAMP/vasoactive intestinal peptide in the intestine: Role of HNF4alpha, CREM, HNF1alpha, and C/EBPalpha. J Biol Chem 2006; 281: 31268-31278. https://doi.org/10.1074/jbc.M603258200
  17. Jain S, Li Y, Patil S, Kumar A. HNF-1alpha plays an important role in IL-6-induced expression of the human angiotensinogen gene. Am J Physiol Cell Physiol 2007; 293: C401-410. https://doi.org/10.1152/ajpcell.00433.2006
  18. Rollini P, Fournier RE. The HNF-4/HNF-1alpha transactivation cascade regulates gene activity and chromatin structure of the human serine protease inhibitor gene cluster at 14q32.1. Proc Natl Acad Sci U S A 1999; 96: 10308-10313. https://doi.org/10.1073/pnas.96.18.10308
  19. Howell SA, Well I, Fleck SL, Kettleborough C, Collins CR, Blackman MJ. A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J Biol Chem 2003; 278: 23890-23898. https://doi.org/10.1074/jbc.M302160200
  20. Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ. Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 2005; 1: 241-251.
  21. Uzureau P, Barale JC, Janse CJ, Waters AP, Breton CB. Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events. Cell Microbiol 2004; 6: 65-78. https://doi.org/10.1046/j.1462-5822.2003.00343.x
  22. Wigler M, Pellicer A, Silverstein S, Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 1978; 14: 725-731. https://doi.org/10.1016/0092-8674(78)90254-4
  23. Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, Shefer S, Bollileni JS, Gonzalez FJ, Breslow JL, Stoffel M. Hepatocyte nuclear factor-1$\alpha$ is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 2001; 27: 375-382. https://doi.org/10.1038/86871
  24. Soutoglou E, Papafotiou G, Katrakili N, Talianidis I. Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins. J Biol Chem 2000; 275: 12515-12520. https://doi.org/10.1074/jbc.275.17.12515
  25. Baxter EW, Cummings WJ, Fournier RE. Formation of a large, complex domain of histone hyperacetylation at human 14q32.1 requires the serpin locus control region. Nucleic Acids Res 2005; 33: 3313-3322. https://doi.org/10.1093/nar/gki645
  26. Wykes MN, Liu XQ, Beattie L, Stanisic DI, Stacey KJ, Smyth MJ, Thomas R, Good MF. Plasmodium strain determines dendritic cell function essential for survival from malaria. PLoS Pathog 2007; 3: e96. https://doi.org/10.1371/journal.ppat.0030096
  27. van Noort V, Huynen MA. Combinatorial gene regulation in Plasmodium falciparum. Trends Genet 2006; 22: 73-78. https://doi.org/10.1016/j.tig.2005.12.002
  28. Gunasekera AM, Myrick A, Militello KT, Sims JS, Dong CK, Gierahn T, Le Roch K, Winzeler E, Wirth DF. Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Mol Biochem Parasitol 2007; 153: 19-30. https://doi.org/10.1016/j.molbiopara.2007.01.011
  29. Lanzer M, Wertheimer SP, de Bruin D, Ravetch JV. Plasmodium: control of gene expression in malaria parasites. Exp Parasitol 1993; 77: 121-128. https://doi.org/10.1006/expr.1993.1068
  30. Wickham ME, Thompson JK, Cowman AF. Characterisation of the merozoite surface protein-2 promoter using stable and transient transfection in Plasmodium falciparum. Mol Biochem Parasitol 2003; 129: 147-156. https://doi.org/10.1016/S0166-6851(03)00118-X
  31. Ruvalcaba-Salazar OK, del Carmen Ramirez-Estudillo M, Montiel-Condado D, Recillas-Targa F, Vargas M, Hernandez-Rivas R. Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. Mol Biochem Parasitol 2005; 140: 183-196. https://doi.org/10.1016/j.molbiopara.2005.01.002
  32. Crabb BS, Cowman AF. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc Natl Acad Sci U S A 1996; 93: 7289-7294. https://doi.org/10.1073/pnas.93.14.7289
  33. Pace T, Olivieri A, Sanchez M, Albanesi V, Picci L, Siden Kiamos I, Janse CJ, Waters AP, Pizzi E, Ponzi M. Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression. Mol Microbiol 2006; 60: 870-882. https://doi.org/10.1111/j.1365-2958.2006.05141.x
  34. Myrick A, Munasinghe A, Patankar S, Wirth DF. Mapping of the Plasmodium falciparum multidrug resistance gene 5'-upstream region, and evidence of induction of transcript levels by antimalarial drugs in chloroquine sensitive parasites. Mol Microbiol 2003; 49: 671-683.