• Title/Summary/Keyword: lens process

Search Result 560, Processing Time 0.032 seconds

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.

Design and Fabrication of Multi-Focusing Microlens Array with Different Numerical Apertures by using Thermal Reflow Method

  • Park, Min-Kyu;Lee, Ho Jun;Park, Ji-Sub;Kim, Mugeon;Bae, Jeong Min;Mahmud, Imtiaz;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • We present design and fabrication of a multi-focusing microlens array (MLA) using a thermal reflow method. To obtain multi-focusing properties with different numerical apertures at the elemental lens of the MLA, double-cylinder photoresist (PR) structures with different diameters were made within the guiding pattern with both photolithographic and partial developing processes. Due to the base PR layer supporting the thermal reflow process and the guiding structure, the thermally reflowed PR structure had different radii of curvatures with lens shapes that could be precisely modeled by the initial volume of the double-cylinder PR structures. Using the PR template, the hexagonally packed multi-focusing MLA was made via the replica molding method, which showed four different focal lengths of 0.9 mm, 1.1 mm, 1.6 mm, and 2.5 mm, and four different numerical apertures of 0.1799, 0.2783, 0.3973, and 0.4775.

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

A Simulation Study on the Development of Injection Mold for the Parts of Phone Camera Lens Module (시뮬레이션을 활용한 폰카메라 렌즈모듈 부품용 사출금형개발)

  • Kim, Hye Jeong;Kim, Jae Hoon;Kim, Yeong Gyoo;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2013
  • The demand of a camera-lens-module which is installed in mobile phone has been increased explosively as the increase of mobile phone market. Recently, two missions are given to the parts manufacturer of lens module, and they are how to keep the quality of injection moulding process as the increase of resolution, and how to decrease manufacturing cost. In this paper, a simulation study is introduced which is used for developing barrel and shield considering the double-cassette type of mould. At first, the simulation for injection process using Mold Flow$^{TM}$ is applied in the phase of mould design, and mechanical simulation using DPM Assembly$^{TM}$ is applied for collision detection between picking robot and mould. As a result, the productivity increased more than 300%.

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF

Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process (LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발)

  • Na, Cho Rok;Nam, Jung Soo;Song, Jun Yeob;Ha, Tae Ho;Kim, Hong Seok;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Ge-doped Boro-Phospho-Silicate Glass Micro-lens Array Produced by Thermal Reflow (가열용융 방법에 의한 Ge-BPSG 마이크로렌즈 어레이 제작)

  • Jeong, Jin-ho;Oh, Jin-Gyeong;Choi, Jun-Seok;Choi, Gi-Seon;Lee, Hyeong-Jong;Bae, Byeong-Seong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.340-344
    • /
    • 2005
  • Microlens cells of Ge-doped BPSG (Boro-Phospho-Silicate Glass) are fabricated by dicing the film produced by FHD (Flame Hydrolysis Deposition). Microlens arrays of $53.4{\mu}m$ square unit are produced by the thermal reflow of the diced unit cells at $1200^{\circ}C$. The gap between the microlenses was about $70{\mu}m,$ and the thickness of the produced lens was about $28.4{\mu}m$. We analyzed the reflowed shape of the microlens cell by an image-process technique, and the focal length was about $62.2{\mu}m$. This method of fabricating a microlens is simple and inexpensive compared to the conventional method using the photolithographic process. Also, the control of the radius of curvature of the microlens is easier and a more precise microlens way of various types can be fabricated using this method.