• Title/Summary/Keyword: lens process

Search Result 560, Processing Time 0.046 seconds

The Performance Analysis and Design of Selling Spectacle Lenses in Domestic Market (국내 시판 안경렌즈의 성능 분석 및 설계)

  • Kim, Se-Jin;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • Purpose: Analysis performance for spectacle lens which sales in domestic market and optimization design a spectacle lens which is corrected aberration. Methods: Measured center thickness, radius and aspherical surface coefficient for spherical and aspherical lenses which were ${\pm}$5.00D. Refractive index for every lens was 1.6 and they came from 4 different companies. I used 3 types of equipment to measure lenses. ID-F150 (Mitutoyo) : Center Thickness, FOCOVISION (SR-2, Automation Robotics) : Radius, PGI 1240S (Taylor Hobson) : Aspherical surface coefficient. Designed a lens which had 27 mm of distance from lens rear surface to center of eye, 4 mm of pupil diameter and small aberration on center vision $30^{\circ}C$. To shorten axial distance compared with the measured lens rise merits for cosmetic. Lens Design tool was CODE V (Optical Research Associates). Results: -5.00D aspherical lens had somewhat high astigmatism and distortion compared with the spherical lens. But it had a merit for cosmetic because of short axial height and decrease edge thickness. Improved a performance of distortion and ascertain merits for cosmetic due to short axial height and decrease edge thickness same as (-) lens in case of +5.00 aspherical lens. Though an optimization process front surface aspherical lens had a good performance for astigmatism and distortion and the merit for beauty compared with measured spherical lens. Conclusions: Design trend for domestic aspherical lens is decrease axial height and thickness to increase a merit for cosmetic not but increase performance of aberration. From design theory for optimization design front surface aspherical spectacle lens which has improved performance of aberration and merit for cosmetic at the same time compared with the measured lens. Expect an improved performance from design back aspherical lens compared with front aspherical lens.

Verification for transcription of spherical radius and prediction of birefringence in injection molding optical lens (초정밀 광학렌즈의 복굴절 예측과 금형 전사성)

  • Ohmori Hitoshi;Kwak Tae Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.55-60
    • /
    • 2005
  • This paper has been focused in developing of plastic lens with ultra-precision and low birefringence ability using by injection molding simulation tools. The simulation tools, $3D-Timon^{TM}\;and\;Asu-Mold^{TM}$ were applied to visualize indirectly the flow pattern of melted polymer enter the mould and the simulation results are verified as compared with the experimental results. Birefringence and polarized light generated in injection molding process was also calculated for each injection conditions and compared with .the pictures of experimented optical lens go through the polarized light plates device. A spherical radius of plastic optical lens transcribed from profile of mould core surface was measured to estimate the geometrical accuracy fer the each injection conditions. It is confirmed that the simulation results about flow pattern and polarized light area coincided in experimental results. It is known that increasing in thickness shrinkage at center of lens, the spherical radius is larger from comparing the graph measured spherical radius and the thickness shrinkage at center of lens

Auto detect inspection system for single lens product of mobile phone camera (휴대폰 카메라용 렌즈단품 이물 자동검사장비)

  • Song C.H.;Jung Y.W.;Bae S.S.;Song J.Y.;Kim Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.432-435
    • /
    • 2005
  • The Mega-pixel camera phones become main trends in mobile phone market. The lens modules used in mesa-pixel camera phones need high resolution. One of the main factors of resolution drop is the defects of bare lens. Though there are many advantages in auto-inspection of defects of bare lens, high technical problems take the defect inspections to be done with manual process. In this paper, the type and the source of defects were described and bare lens defect auto-inspection system design was explained. The designed auto-inspection system is composed of illumination optics part, focusing optics part and auto-moving system. With the proposed auto-inspection system, fast and uniform inspection of bare lens can be achieved.

  • PDF

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern : I. Optical Analysis and Design (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : I. 광학 해석 및 설계)

  • Hwang, C.J.;Ko, Y.B.;Kim, J.S.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.239-242
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LGP (Light Guiding Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200$ um in diameter on it by etching process. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with 50um micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different aspect ratio (i.e. $0.2{\sim}0.5$) of optical pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, high aspect ratio micro-lens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

  • PDF

Automatioc Density Measurement System Using Optical Lens in High Speed Textile Fabrication Process (고속의 직물 제직 공정에서 광학적 렌즈를 이용한 자동 밀도 측정 시스템)

  • Lee, Eung-Joo;Hyun, Eung-Joo;Jeong, In-Gab
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.111-118
    • /
    • 1998
  • The density of fabric is a very important parameter in many fabric production processes. However, in the textile fabrication factories, textile density measurement process has been done inefficiently by handicraft. Thus, exact textile density measurement process is necessary to fabricate high quality textile through weft straighten. In this paper, we propose an automatic textile density measurement system to measure textile density automatically and to improve fabrication efficiency. The proposed system uses cylindrical lens to optically scan the weftl information of the fabric as well as convex lens to enlarge the weft images. The proposed system improves textile quality and provides constant density value to the whole textile range in the high speed fabrication process.

  • PDF

Optical properties of ZnS ceramics by hot press stack sintering process (고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.