• Title/Summary/Keyword: length variation

Search Result 2,247, Processing Time 0.029 seconds

A Study on Dynamic Capacity Assessment of PSC Box Girder High Speed Railway Bridges Using Time Series Load (시계열하중을 이용한 PSC 박스 거더 고속철도교량의 동적성능 평가에 관한 연구)

  • Han, Sung Ho;Bang, Myung Seok;Lee, Woo Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.211-219
    • /
    • 2010
  • The design concept of high speed railway bridges is applied to a method for increasing the stiffness of existing bridge structures considering the impact factor by a static load. Generally, the process of structural design would be relied upon an advanced foreign technology. However, the dynamic amplification factor (DAF) and dynamic capacity assessment of high speed railway bridges may be conducted essentially a detailed estimation because the resonance phenomenon is affected by the long length (380 m) and high speed (300 km/h) moving of a high speed railway (Korea Train eXpress: KTX). Therefore, this study will be examined the dynamic capacity of the typical PSC Box Girder high speed railway bridge efficiently, and offered the basic information for the reasonable structural design. For this, the static analysis is conducted considering the load line diagram of KTX based upon existing references. In addition, the KTX moving load is transformed into the time series load considering various analytical variables. The time history analysis is assessed reasonable using the transformed time series load. At that time, analytical variables for calculating the time series load are considered loading node distance, time increment and KTX velocity variation etc. The dynamic capacity of the PSC Box Girder high speed railway bridge is examined based upon the FE analysis result systematically. The structural safety is assessed quantitatively in accordance with the related regulation of the inside and outside of the country.

An Experimental Study on a Characteristics of Flow around Groynes for Groyne Spacing (수제 설치간격에 따른 수제주변 흐름특성에 관한 실험 연구)

  • Kang, Joon Gu;Yeo, Hong Koo;Roh, Young Sin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.271-278
    • /
    • 2006
  • In design of groyne series, groyne spacing is a important factor and have an effect on not only the characteristics of backward and recirculation flow in groyne zone but also flow field in main channel. It is necessary study about flow pattern of recirculation zone and main channel that is a cause of bad change, local scour and bank erosion by groyne spacing. In this study, flow variation of groyne zone and main chanel for spacing of groynes were analyzed from the experiment results in order to offer a fundamental data that can be used to decide the proper groyne spacing. Experiments were conducted 12 cases for groyne spacing(L) by groyne length(l) rate and the velocity profile was measured using LSPIV and ADV. From the results, two vortex flows developed in recirculation zone for L/l=3~9 and three vortex flows developed over L/l=10. The velocity of backward flow in recirculation zone was decreased up to 20% over L/l=4. The velocity of main channel flow was increased from 1.3 to 2.0 times by groyne spacing and the rate of velocity increased by increasing groyne spacing. The maximum velocity occurred in 0.7~0.8 times of groyne spacing downstream of upper groyne.

Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds

  • Wang, Hanning;Zhong, Liang;Dong, Yanbing;Meng, Lingbo;Ji, Cheng;Luo, Hui;Fu, Mengrong;Qi, Zhi;Mi, Lan
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1303-1313
    • /
    • 2022
  • Objective: The current study aimed to perform whole-genome resequencing of Chinese indigenous Mongolian sheep breeds including Ujimqin, Sunit, and Wu Ranke sheep breeds (UJMQ, SNT, WRK) and deeply analyze genetic variation, population structure, domestication, and selection for domestication traits among these Mongolian sheep breeds. Methods: Blood samples were collected from a total of 60 individuals comprising 20 WRK, 20 UJMQ, and 20 SNT. For genome sequencing, about 1.5 ㎍ of genomic DNA was used for library construction with an insert size of about 350 bp. Pair-end sequencing were performed on Illumina NovaSeq platform, with the read length of 150 bp at each end. We then investigated the domestication and signatures of selection in these sheep breeds. Results: According to the population and demographic analyses, WRK and SNT populations were very similar, which were different from UJMQ populations. Genome wide association study identified 468 and 779 significant loci from SNT vs UJMQ, and UJMQ vs WRK, respectively. However, only 3 loci were identified from SNT vs WRK. Genomic comparison and selective sweep analysis among these sheep breeds suggested that genes associated with regulation of secretion, metabolic pathways including estrogen metabolism and amino acid metabolism, and neuron development have undergone strong selection during domestication. Conclusion: Our findings will facilitate the understanding of Chinese indigenous Mongolian sheep breeds domestication and selection for complex traits and provide a valuable genomic resource for future studies of sheep and other domestic animal breeding.

Impacts of Health Insurance Coverage Expansion on Health Care Utilization and Health Status (건강보험 보장성 확대가 의료이용 및 건강수준에 미치는 영향)

  • Bae, Ji-Young
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.2
    • /
    • pp.35-65
    • /
    • 2010
  • The purpose of this study is to identify the relationship between health insurance and health by evaluating the impacts of health insurance coverage expansion on health care utilization and health status. To analyze the causal relationship between health insurance and health, this study employed a "difference-in-difference method" that could compare changes in health care utilization and health status across groups in health insurance coverage expansion in 2005. The researcher predicted that the expansion of health insurance coverage would be an exogenous source of variation in the prices of health service use. First, the difference-in-differences estimator between 'illness group' and 'non-illness group' revealed that the increase in coverage of inpatient care services would result from the increases in the stay of length of 'non-illness group' rather than that of 'illness group'. However, the difference-in-differences estimator between 'serious illness group' and 'chronic illness group' identified that the policy change that focuses on expansion of the coverage for 'serious illness' effects on the increases in health care utilization and promotion of health status. In summary, the changes of health insurance coverage focusing on serious illness and inpatient care have positive effects on health care utilization and health status of serious illness group. But, 'non-illness groups' with acute illness receive more benefits from the policy change than 'illness group' with chronic illness.

Growth Characteristics And Yield of Corn (Zea mays L.) for Grain by Early Sowing Date in the Central Region of South Korea

  • Young-Chul Yoo; Jeong-Ju Kim;Seuk-Ki Lee;Mi-Jin Chae;Myeong-Na Shin;A-Reum Han;Weon-Tai Jeon;Hwan-Hee Bae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.84-84
    • /
    • 2022
  • The limit of crop cultivation is moving northward due to the temperature rise by climate change. There is a problem with crop growth if early sowing is performed at a time when the temperature is low. It is difficult to secure crop productivity and cultivation stability due to the low temperature and short cultivation period. Therefore, this study was conducted to analyze the change in growth characteristics and yield of corn for grain when early sowing is performed in central region of South Korea. This experiment was conducted at experimental field of Suwon in 2021. Three varieties of corn for grain such as Kwangpyeongok, Sinhwangok, and Hwangdaok were sown at intervals of 5 days from 20 March to 15 April. The planting density at this time was sown with a row interval of 70 cm and a plant interval of 25 cm. Nitrogen, phosphoric acid, and potassium fertilizers were applied at 17.4 kg, 3.0 kg, and 6.9 kg per 10a, respectively. Phosphoric acid and potassium fertilizers were all applied before sowing and nitrogen fertilizer was applied 50% before sowing and 50% in the fifth leaf period. The corn growth characteristics and yield components were investigated. The seedling establishment rate by sowing date was in the range of 68.5~88.5%, and it showed a difference depending on the variety. The range of days from sowing to tassel and silk emergence by sowing date was 79.9~98.4 and 81.0~98.9 days, respectively. As the sowing date was delayed, the days from sowing to tassel and silk emergence decreased. The growth characteristics and yield of corn by sowing date are as follows. Plant height was the highest at 241.3 cm at the sowing on 25 March, and Stalk diameter was the thickest at 25.6 mm at the sowing on 31 March. The fresh weight per plant was the highest at 728 g at the sowing on 25 March, and the dry weight per plant was the highest at 185 g at the sowing on 31 March. Corn growth characteristics did not show a certain trend depending on the sowing date, and corn growth was more vigorous at the sowing on March 25 and 31 than the others. In the case of ear weight, it was the heaviest with 344 g at the sowing on 25 March, and filled ear length ratio showed a tendency to decrease as the sowing time was delayed. The weight of 100 grains and grain yield per 10a of maize were the highest at 36.0g and 878.7kg/10a, respectively at the sowing on 25 March. Although the growth and yield of corn for grain were good during early sowing in the central region of South Korea, it is necessary to investigate the limit temperature for early sowing of corn by examining the annual variation according to weather conditions.

  • PDF

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Studies of Molecular Breeding Technique Using Genome Information on Edible Mushrooms

  • Kong, Won-Sik;Woo, Sung-I;Jang, Kab-Yeul;Shin, Pyung-Gyun;Oh, Youn-Lee;Kim, Eun-sun;Oh, Min-Jee;Park, Young-Jin;Lee, Chang-Soo;Kim, Jong-Guk
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Agrobacterium tumefaciens-mediated transformation(ATMT) of Flammulina velutipes was used to produce a diverse number of transformants to discover the functions of gene that is vital for its variation color, spore pattern and cellulolytic activity. Futhermore, the transformant pool will be used as a good genetic resource for studying gene functions. Agrobacterium-mediated transformation was conducted in order to generate intentional mutants of F. velutipes strain KACC42777. Then Agrobacterium tumefaciens AGL-1 harboring pBGgHg was transformed into F. velutipes. This method is use to determine the functional gene of F. velutipes. Inverse PCR was used to insert T-DNA into the tagged chromosomal DNA segments and conducting sequence analysis of the F. velutipes. But this experiment had trouble in diverse morphological mutants because of dikaryotic nature of mushroom. It needed to make monokaryotic fruiting varients which introduced genes of compatible mating types. In this study, next generation sequencing data was generated from 28 strains of Flammulina velutipes with different phenotypes using Illumina Hiseq platform. Filtered short reads were initially aligned to the reference genome (KACC42780) to construct a SNP matrix. And then we built a phylogenetic tree based on the validated SNPs. The inferred tree represented that white- and brown- fruitbody forming strains were generally separated although three brown strains, 4103, 4028, and 4195, were grouped with white ones. This topological relationship was consistently reappeared even when we used randomly selected SNPs. Group I containing 4062, 4148, and 4195 strains and group II containing 4188, 4190, and 4194 strains formed early-divergent lineages with robust nodal supports, suggesting that they are independent groups from the members in main clades. To elucidate the distinction between white-fruitbody forming strains isolated from Korea and Japan, phylogenetic analysis was performed using their SNP data with group I members as outgroup. However, no significant genetic variation was noticed in this study. A total of 28 strains of Flammulina velutipes were analyzed to identify the genomic regions responsible for producing white-fruiting body. NGS data was yielded by using Illumina Hiseq platform. Short reads were filtered by quality score and read length were mapped on the reference genome (KACC42780). Between the white- and brown fruitbody forming strains. There is a high possibility that SNPs can be detected among the white strains as homozygous because white phenotype is recessive in F. velutipes. Thus, we constructed SNP matrix within 8 white strains. SNPs discovered between mono3 and mono19, the parental monokaryotic strains of 4210 strain (white), were excluded from the candidate. If the genotypes of SNPs detected between white and brown strains were identical with those in mono3 and mono19 strains, they were included in candidate as a priority. As a result, if more than 5 candidates SNPs were localized in single gene, we regarded as they are possibly related to the white color. In F. velutipes genome, chr01, chr04, chr07,chr11 regions were identified to be associated with white fruitbody forming. White and Brown Fruitbody strains can be used as an identification marker for F. veluipes. We can develop some molecular markers to identify colored strains and discriminate national white varieties against Japanese ones.

  • PDF

Mineralogical Characterization of the Chuncheon Nephrite: Mineral Facies, Mineral Chemistry and Pyribole Structure (춘천 연옥 광물의 광물학적 특성 : 광물상, 광물 화학 및 혼성 격자 구조)

  • Noh, Jin Hwan;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.57-79
    • /
    • 1993
  • Chuncheon nephrite, which was formed by the polymetasomatic alteration of dolomitic marble, can be classified into pale green, green, dark green, and grey types on the basis of their occurrence, mineralogical and textural characteristics. The nephrites consist obiefly of fibrous or hairlike(length/width ratio>10) cryptocrystalline(crystal width < $2{\mu}m$) tremolite, and include less amounts of micro-crystalline diopside, calcite, clinochlore, and sphene as impurities. The oriented and rather curved crystal aggregate, of nephritic tremolite are densely interwoven, resulting in a massive-fibrous texture which may explain the characteristic toughness of nephritic jade. The characteristic greenish color of the nephrite may be preferably related to Fe rather than Cr and Ni. However, the variation of color and tint in the Chuncheon nephrite also depends on the mineralogical and textural differences such as crystallinity, texture, and impurities. The chemical composition of the nephritic tremolite is not stoichiometric and rather dispersed especially in the abundances of Al, Mg, and Ca. Al content and Mg/Ca ratio for the nephritic tremolite are slightly increased with deepening in greenish color of the nephrite. Fe content in the nephritic tremolite is generally very low, but comparatively richer in the dark green nephrite. In nephritic tremolite, wide-chain pyriboles are irregularly intervened between normal double chains, forming a chain-width disorder. Most nephritic tremolites in the Chuncheon nephrite show various type of chain-width defects such as triple chain(jimthompsonite), quintuple chain (chesterite), or sometimes quadruple chain in HRTEM observations. The degree of chain-width disorder in the nephritic tremolite tends to increase with deepening in greenish color. Triple chain is the most common type, and quadruple chain is rarely observed only in the grey nephrite. The presence of pyribole structure in the nephritic tremolite is closely related to the increase of Al content and Mg/Ca ratio, a rather dispersive chemical composition, a decrease of relative intensity in (001) XRD reflection, and an increase in b axis dimension of unit cell. In addition, the degree and variation of chain-width disorder with nephrite types may support that an increase of metastability was formed by a rapid diffusion of Mg-rich fluid during the nephrite formation.

  • PDF

The impact of anthropogenic factors on changes in discharge and quality of water in the Hadano basin, Japan (인위적인 요인이 하천의 유량과 수질변화에 미친 영향 - 일본 하다노 분지를 사례 로 -)

  • ;Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.242-254
    • /
    • 1995
  • The Hadano Basin is located at a distance of about 70kms and 60kms from Tokyo and Yokohama and lies in the south-west part of the Kanto region in Japan. The basin area, which correspoends to the catchment of the Kaname River, is about areal size of 60.7$\textrm{km}^2$ and extends about length of 8kms in E-W direction and about width of 5kms in N-S direction (Fig.1). The Hadano basin is filled with thick pile of the alluvum from deposits composed of volcanic materials, mostly came from the Hakone Volcano and overlain by Fuji Volcanic ashes. Fluvial deposits form the good aquifer, therefore water resources of Handano City has been largely depending upon the eroundwater. Urbanization and industrialization of the basin has been rapid in the last thirty years, after activation of "Factory Attraction Policy of Hadano City" in 1956. Growth in population and number of factory due to urbanization changed the land-use pattern of the basin rapidly and increased the water demands. Therefore, Hadano City exploited a new source of water supply, and have introduced the prefectureal waterworks since 1976. On the other hand, the rapid urbanization has brought about the pollution of streams in the basin by domestic sewage and industrial waste water. Diffusion rate of sewerage systems in Hadano City is 38% in 1993. In ordcr to examine the impact of anthropogenic factors on river environments, the author took up the change of land-use and diffusion area of sewerage as parameters, and performed field surveys on water discharge and quality. The survey has been made at upstream and downstream of the main stream regularly per month, to get informati ons about the variation of discharge and water quality aiong the stream and its diurnal fluctuation. Annual variation has been analyzed based the data from Hadano City Office. The results are summarized as follows. 1. Stream discharge has been increasing by urbanization (Fig.3). Water quality (C $l^{-10}$ , N $H^{+}$$_{ 4}$-N, BOD) has been improving gradually after the application of sewerage service, yet water pollution load at the lower station has increased than that at the upper one because of the larger anthropogenic discharge volumes (Fig.4). 2. Corrclation coefficient of discharges between upper and lower was 0.81-0.92. Pollutant loads of the R. Kamame after the confluence with R. Kuzuha grew up by 2.4-3.7 times as compared with its upper reaches, and it increased to 3.7-6.9 times after the confluence with the R. Muro (Fig.5). 3. The changes of water quality along the stream can be divided into two groups (Fig.6a). First: water quality of the R. Kaname and R. Shijuhachisse is becoming worse towards the lower reaches because the water from branches are polluted. Second: water quality are improved in the lower where spring and small branch streams supply clear water, for example R. Mizunashi, R. Muro and R. Kuzuha. 4. Measured discharge at the upper station in the R. Shijuhachisse is 0.153㎥/sec, and about 55% of this is recharged until it reaches to the lower point. The R. Mizunashi has a discharge of 1.155㎥/sec at the upper point, is recharged 0.24㎥/sec until the midstream and groundwater spring 0.2㎥/sec at the lower reaches. R. Kuzuha recharged all the mountain runoff (0.2㎥/sec) at the upper reaches. The R. Muro is supplied by many springs and the estimated discharge of spring was 0.47㎥/sec (Fig.6b). 5. Diurmal variations in discharge and water quality are influenced clearly by domestic and industrial waste waters (Fig.7, 8).ed clearly by domestic and industrial waste waters (Fig.7, 8).

  • PDF