Whole-genome resequencing reveals domestication and signatures of selection in Ujimqin, Sunit, and Wu Ranke Mongolian sheep breeds |
Wang, Hanning
(State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University)
Zhong, Liang (Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital) Dong, Yanbing (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Meng, Lingbo (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Ji, Cheng (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Luo, Hui (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Fu, Mengrong (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Qi, Zhi (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) Mi, Lan (State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University) |
1 | Abied A, Xu L, Sahlu BW, et al. Genome-wide analysis revealed homozygosity and demographic history of five Chinese sheep breeds adapted to different environments. Genes (Basel) 2020;11:1480. https://doi.org/10.3390/genes11121480 DOI |
2 | Abied A, Bagadi A, Bordbar F, et al. Genomic diversity, population structure, and signature of selection in five chinese native sheep breeds adapted to extreme environments. Genes (Basel) 2020;11:494. https://doi.org/10.3390/genes 11050494 DOI |
3 | Zhang Y, Xue X, Liu Y, et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci Rep 2021;11:2466. https://doi.org/10.1038/s41598-021-81932-y DOI |
4 | Zhi D, Da L, Liu M, et al. Whole genome sequencing of hulunbuir short-tailed sheep for identifying candidate genes related to the short-tail phenotype. G3 (Bethesda) 2018;8: 377-83. https://doi.org/10.1534/g3.117.300307 DOI |
5 | Pan Z, Li S, Liu Q, et al. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genomics 2019;20:261. https://doi.org/10.1186/s12864-019-5620-6 DOI |
6 | McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol 2016;17:122. https://doi.org/10.1186/s13059-016-0974-4 DOI |
7 | Zhang T, Gao H, Sahana G, et al. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep. J Anim Breed Genet 2019; 136:362-70. https://doi.org/10.1111/jbg.12402 DOI |
8 | Li X, Yang J, Shen M, et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat Commun 2020; 11:2815. https://doi.org/10.1038/s41467-020-16485-1 DOI |
9 | Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114-20. https://doi.org/10.1093/bioinformatics/btu170 DOI |
10 | Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95. https://doi.org/10.1093/bioinformatics/btp698 DOI |
11 | Yin L, Zhang H, Tang Z, et al. rMVP: A memory-efficient, visualization-enhanced, and Parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinformatics 2021;19:619-28. https://doi.org/10.1016/j.gpb.2020.10.007 DOI |
12 | Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 2009;19:1655-64. https://doi.org/10.1101/gr.094052.109 DOI |
13 | Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature 2011;475:493-6. https://doi.org/10.1038/nature10231 DOI |
14 | Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984;38:1358-70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x DOI |
15 | McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110 DOI |
16 | Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989;123:585-95. https://doi.org/10.1093/genetics/123.3.585 DOI |
17 | Ganbold O, Lee S-H, Seo D, et al. Genetic diversity and the origin of Mongolian native sheep. Livest Sci 2019;220:17-25. https://doi.org/10.1016/j.livsci.2018.12.007 DOI |
18 | Li M, Tian S, Jin L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 2013;45:1431-8. https://doi.org/10.1038/ng.2811 DOI |
19 | Lehmkuhl F, Owen LA. Late quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 2005;34:87-100. https://doi.org/10.1111/j.1502-3885.2005.tb01008.x DOI |
20 | Kim J, Hu Z, Cai L, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 2017;546:168-72. https://doi.org/10.1038/nature22359 DOI |
21 | Zhong T, Han JL, Guo J, et al. Tracing genetic differentiation of Chinese Mongolian sheep using microsatellites. Anim Genet 2011;42:563-5. https://doi.org/10.1111/j.1365-2052.2011.02181.x DOI |
22 | Matsumoto M, Miki T, Shibasaki T, et al. Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc Natl Acad Sci USA 2004;101:8313-8. https://doi.org/10.1073/pnas.0306709101 DOI |
23 | Ganbold O, Manjula P, Lee SH, et al. Sequence characterization and polymorphism of melanocortin 1 receptor gene in some goat breeds with different coat color of Mongolia. Asian-Australas J Anim Sci 2019;32:939-48. https://doi.org/10.5713/ajas.18.0819 DOI |
24 | Dutta P, Talenti A, Young R, et al. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat Commun 2020;11:4739. https://doi.org/10.1038/s41467-020-18550-1 DOI |
25 | Pan ZY, Li SD, Liu QY, et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience 2018;7: giy019. https://doi.org/10.1093/gigascience/giy019 DOI |
26 | Wei C, Wang H, Liu G, et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics 2015;16:194. https://doi.org/10.1186/s12864-015-1384-9 DOI |
27 | Ehlers J, Gibbard PL. The extent and chronology of cenozoic global glaciation. Quat Int 2007;164-65:6-20. https://doi.org/10.1016/j.quaint.2006.10.008 DOI |
28 | Jiang Y, Xie M, Chen WB, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014; 344:1168-73. https://doi.org/10.1126/science.1252806 DOI |
29 | Zhao YX, Yang J, Lv FH, et al. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol Biol Evol 2017;34:2380-95. https://doi.org/10.1093/molbev/msx181 DOI |
30 | Yang J, Li WR, Lv FH, et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol Biol Evol 2016;33:2576-92. https://doi.org/10.1093/molbev/msw129 DOI |
31 | Liu ZH, Ji ZB, Wang GZ, Chao T, Hou L, Wang J. Genomewide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics 2016;17:863. https://doi.org/10.1186/s12864-016-3212-2 DOI |
32 | Alberto FJ, Boyer F, Orozco-terWengel P, et al. Convergent genomic signatures of domestication in sheep and goats. Nat Commun 2018;9:813. https://doi.org/10.1038/s41467-018-03206-y DOI |
33 | Talebi M, Mehrjardi MYV, Kalhor K, Dehghani M. Is there any relationship between mutation in CPS1 Gene and pregnancy loss? Int J Reprod Biomed 2019;17:371-4. https://doi.org/10.18502/ijrm.v17i5.4604 DOI |
34 | Tong SQ, Bao YH, Te RL, Ma Q, Ha S, Lusi A. Analysis of drought characteristics in Xilingol Grassland of Northern China based on SPEI and its impact on vegetation. Math Probl Eng 2017;2017:5209173. https://doi.org/10.1155/2017/5209173 DOI |
35 | Beissbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 2004;20:1464-5. https://doi.org/10.1093/bioinformatics/bth088 DOI |
36 | Kang L, Han X, Zhang Z, Sun OJ. Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc Lond B Biol Sci 2007;362:997-1008. https://doi.org/10.1098/rstb.2007.2029 DOI |
![]() |