• Title/Summary/Keyword: length encoding

Search Result 348, Processing Time 0.024 seconds

Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses

  • Pulla, Rama Krishna;Kim, Yu-Jin;Kim, Myung-Kyum;Senthil, Kalai Selvi;In, Jun-Gyo;Yang, Deok-Chun
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freezing and drought-tolerance in plants. A full-length cDNA encoding DHN (designated as ClDhn) was isolated from an oriental medicinal plant Codonopsis lanceolata, which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, triggered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration.

An Effective Structure of Hardware Compression for Potentially Visible Set of Indoor 3D Game Scenes (실내 3D 게임 장면의 잠재적 가시 집합을 위한 효과적인 하드웨어 압축 구조)

  • Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.14 no.6
    • /
    • pp.29-38
    • /
    • 2014
  • In the large scale indoor 3D game scenes, the data amount of potentially visible set (PVS) which pre-computes the information of occlusion culling can be huge. However, the large part of them can be represented as zero. In this paper, the effective hardware structure is designed, which compresses PVS data as the way of zero run length encoding (ZRLE) during building the scene trees of 3D games in mobile environments. The compression ratio of the proposed structure and the rendering speed (frame per second: FPS) according to both PVS culling and frustum culling are analyzed under 3D game simulations.

A Differential Index Assignment Scheme for Tree-Structured Vector Quantization (나무구조 벡터양자화 기반의 차분 인덱스 할당기법)

  • 한종기;정인철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.100-109
    • /
    • 2003
  • A differential index assignment scheme is proposed for the image encoding system in which a variable-length tree-structured vector quantizer is adopted. Each source vector is quantized into a terminal node of VLTSVQ and each terminal node is represented as a unique binary vector. The proposed index assignment scheme utilizes the correlation between interblocks of the image to increase the compression ratio with the image quality maintained. Simulation results show that the proposed scheme achieves a much higher compression ratio than the conventional one does and that the amount of the bit rate reduction of the proposed scheme becomes large as the correlation of the image becomes large. The proposed encoding scheme can be effectively used to encode R images whose pixel values we, in general, highly correlated with those of the neighbor pixels.

Isolation and characterization of Bradh1 gene encoding alcohol dehydrogenase from Chinese cabbage (Brassica rapa)

  • Abdula, Sailila E.;Lee, Hye-Jung;Melgar, Reneeliza J.;Sun, Mingmao;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • Alcohol dehydrogenase (E.C.1.1.1.1) is an enzyme present in higher plants involved in the anaerobic fermentation pathway that catalyzes the reduction of pyruvate to ethanol, resulting in continuous $NAD^+$ regeneration. It also plays an important role in many plant developments including tolerance to anoxia condition. Here, a cDNA clone encoding alcohol dehydrogenase (ADH) was isolated from Chinese cabbage (Brassica rapa) seedlings. The gene named Bradh1 had a total length of 1,326 bp that contains a single open reading frame of 1,140 bp. The predicted protein consists of 379 amino acid residues with a calculated molecular mass of 41.17 kDa. Expression pattern analysis revealed a tissue-specific expressing gene in different tissues and strongly expressed in the shoot, roots and seeds of Chinese cabbage. Agrobacterium transformation of full-length cDNA Bradh1 into rice Gopumbyeo showed high efficiency. Furthermore, induction of ADH in transgenic rice enhanced tolerance to anaerobiosis stresses and elevated mRNA transcripts. The overexpression of Bradh1 in rice increases germination under anaerobiosis stresses, implying the possibility of developing new varieties suited for direct seeding or flood-prone rice field.

Storage systems using RLE compression (RLE 압축 기법을 이용한 저장 시스템)

  • Kim, Kyeong-Og;Kim, Jong-Chan;Ban, Kyeong-Jin;Heo, Su-Yeon;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.686-688
    • /
    • 2010
  • The supply of context information is increasing with the propagation of ubiquitous computing environment. Recently, as context information is being collected through electronic tags and sensors attached to the environment, we need methods to efficiently store and search large volumes of data. This paper describes the application of the RLE (Run Length Encoding) compression method for sensors that continuously collect data in USN/RFID terminals.Time information is marked on the data and one data block is generated and saved. This paper proposes a storage method that allows us to quickly search data of the desired time and place by recording time information in continuous data.

  • PDF

Molecular characterization of BrRZFPs genes encoding C3HC4 type RING zinc finger protein under abiotic stress from Chinese cabbage (Brassica rapa L.)

  • Jung, Yu Jin;Lee, Kye Dong;Cho, Yong Gu;Nou, Ill Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.102-110
    • /
    • 2013
  • The novel BrRZFPs genes encoding C3HC4-type RING zinc finger protein were identified from FOX (full length cDNA over-expressing) library of Brassica rapa. Ten full-length cDNAs obtained from the library encode zinc-finger protein containing 346 amino acids, designated BrRZFPs. These genes were classified into four groups by phylogenic analysis showing conserved protein sequences at both termini. The tissue distribution of BrRZFPs transcription was examined by qRT-PCR revealing ubiquitous expression pattern. However, each gene was strongly expressed in the specific tissue. Transcriptional analysis showed that those acquired 10 genes were inducible under abiotic stresses. Likewise, the transcript of BrRZFP3 was strongly induced (~12-folds) by exogenous abscisic acid, whereas the transcripts of BrRZFP1, BrRZFP2 and BrRZFP3 were (> 9-folds) induced by cold. We suggest that these BrRZFPs that function as signal or response to abiotic stress are useful for crop improvement.

Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase

  • Kim, Nam Hee;Park, Ji-Hye;Chung, Eunsook;So, Hyun-Ah;Lee, Myung Hwan;Kim, Jin-Cheol;Hwang, Eul Chul;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.

Fast XML Encoding Scheme Using Reuse of Deleted Nodes (삭제된 노드의 재사용을 이용한 Fast XML 인코딩 기법)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.835-843
    • /
    • 2023
  • Given the structure of XML data, path and tree pattern matching algorithms play an important role in XML query processing. To facilitate decisions or relationships between nodes, nodes in an XML tree are typically labeled in a way that can quickly establish an ancestor-descendant on relationship between two nodes. However, these techniques have the disadvantage of re-labeling existing nodes or recalculating certain values if insertion occurs due to sequential updates. Therefore, in current labeling techniques, the cost of updating labels is very high. In this paper, we propose a new labeling technique called Fast XML encoding, which supports the update of order-sensitive XML documents without re-labeling or recalculation. It also controls the length of the label by reusing deleted labels at the same location in the XML tree. The proposed reuse algorithm can reduce the length of the label when all deleted labels are inserted in the same location. The proposed technique in the experimental results can efficiently handle order-sensitive queries and updates.

cDNA Cloning and Overexpression of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.137-141
    • /
    • 1996
  • A partial cDNA encoding a Korean radish isoperoxidase was obtained from a cDNA library prepared from 9 day old radish root. In order to obtain Korean radish isoperoxidase cDNA, 5' RACE (rapid amplification cDNA end) PCR was performed and a cDNA (prxK1) encoding a complete structural protein was obtained by RT (reverse transcription)-PCR. Sequence analysis revealed that the length of the cDNA was 945 base pairs, and that of the mRNA transcript was ca. 1.6 kb. The deduced amino acid of the protein were composed of 315 amino acid residues and the protein was 92% homologous to turnip peroxidase, and 46% to 50% homologous to other known peroxidases. The 945 bp cDNA encoding Korean radish isoperoxidase was overexpressed in Escherichia coli up to approximately 9% of total cellular protein. The recombinant fusion protein exhibited 43 kDa on SDS-PAGE analysis and the activity level of the recombinant nonglycosylated protein was two fold higher in IPTG induced cell extracts than that of uninduced ones.

  • PDF

Molecular Cloning and Functional Expression of esf Gene Encoding Enantioselective Lipase from Serratia marcescens ES-2 for Kinetic Resolution of Optically Active (S)-Flurbiprofen

  • Lee, Kwang-Woo;Bae, Hyun-Ae;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217kU/ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl ${\beta}-cyclodextrin$ as the dispenser at $37^{\circ}C$ for 12h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.