Browse > Article
http://dx.doi.org/10.5010/JPB.2011.38.1.077

Isolation and characterization of Bradh1 gene encoding alcohol dehydrogenase from Chinese cabbage (Brassica rapa)  

Abdula, Sailila E. (Department of Crop Science, Chungbuk National University)
Lee, Hye-Jung (Department of Crop Science, Chungbuk National University)
Melgar, Reneeliza J. (Department of Crop Science, Chungbuk National University)
Sun, Mingmao (Department of Crop Science, Chungbuk National University)
Kang, Kwon-Kyoo (Department of Horticulture, Hankyong National University)
Cho, Yong-Gu (Department of Crop Science, Chungbuk National University)
Publication Information
Journal of Plant Biotechnology / v.38, no.1, 2011 , pp. 77-86 More about this Journal
Abstract
Alcohol dehydrogenase (E.C.1.1.1.1) is an enzyme present in higher plants involved in the anaerobic fermentation pathway that catalyzes the reduction of pyruvate to ethanol, resulting in continuous $NAD^+$ regeneration. It also plays an important role in many plant developments including tolerance to anoxia condition. Here, a cDNA clone encoding alcohol dehydrogenase (ADH) was isolated from Chinese cabbage (Brassica rapa) seedlings. The gene named Bradh1 had a total length of 1,326 bp that contains a single open reading frame of 1,140 bp. The predicted protein consists of 379 amino acid residues with a calculated molecular mass of 41.17 kDa. Expression pattern analysis revealed a tissue-specific expressing gene in different tissues and strongly expressed in the shoot, roots and seeds of Chinese cabbage. Agrobacterium transformation of full-length cDNA Bradh1 into rice Gopumbyeo showed high efficiency. Furthermore, induction of ADH in transgenic rice enhanced tolerance to anaerobiosis stresses and elevated mRNA transcripts. The overexpression of Bradh1 in rice increases germination under anaerobiosis stresses, implying the possibility of developing new varieties suited for direct seeding or flood-prone rice field.
Keywords
alcohol dehydrogenase; ADH; Bradh1; transgenicrice; anaerobiosis; germination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Quimio CA, Torrizo LB, Setter TL, Ellis M, Grover A, Abrigo EM, Oliva NP, Ella ES, Carpena AL, Ito O et al. (2000) Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J Plant Physiol 156:516-521   DOI   ScienceOn
2 Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact 13:649-657   DOI
3 Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71-82   DOI
4 Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271-282   DOI
5 Ishida Y, Saito H, Oita S, Hiei Y, Komari T, Kumashito T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745-750   DOI
6 Jackson MB (1985) Ethylene and the responses of plants to soil water-logging and submergence. Annu Rev Plant Physiol 36:145-174   DOI
7 Jeon JS, Lee S, Jung KH (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561-570   DOI
8 Johnson JR, Cobb BG, Drew MC (1994) Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L. Plant Physiol 105:61-67   DOI
9 Kadowaki KI, Matsuoka M, Murai N, Harada K (1988) Induction of two alcohol dehydrogenase polypeptides in rice roots during anaerobiosis. Plant Science. 54:29-36.   DOI
10 Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 84:1204-1209
11 Kordan HA (1977) Coleoptile emergence in rice seedlings in different oxygen environments. Annals of Botany 41:1205-1209   DOI
12 Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Giacomo N, Berreta O, Federico V, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218-231.   DOI
13 Crawford R MM (1992) Oxygen availability as an ecological limit to plant distribution. Adv Ecol Res 23:93-185   DOI
14 Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica rice recovered from protoplasts. Bio Technology 8:736-740   DOI
15 Davey MR, Kothari SL, Zhang H, Rech EL, Cocking EC, Lynch PT (1991) Transgenic rice: characterization of protoplast- derived plants and their seed progeny. J Exp Bot 42:1159-1169   DOI
16 Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51:89-97   DOI
17 Dolferus R, Klok EJ, Delessert C, Wilson S, Ismond KP, Good AG, Peacock WJ, Dennis ES (2003) Enhancing the anaerobic response. Ann Bot 91:111-117   DOI
18 Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223-250   DOI
19 Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5: 123-127   DOI
20 Freeling M, Bennett DC (1985) Maize Adh1. Ann Rev Genet 19:297-323   DOI
21 Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:41-47
22 Grichko VP and Glick BR (2001) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19-25   DOI
23 Gottlieb LD (1982) Conservation and duplication of isozymes in plants. Science 216:373-380   DOI
24 Atwell BJ, Waters I, Greenway H (1982) The effect of oxygen and turbulence on elongation of coleoptiles of submergencetolerant and intolerant cultivars. J Exp Bot 33:1030-1044   DOI
25 Battraw MJ, Hall TC (1992) Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci 86:191-202   DOI
26 Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric $\alpha$-amylase promoter/$\beta$-glucuronidase gene. Plant Mol Biol 22:491-506   DOI
27 Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83:1408-1412   DOI
28 Cho YG, Kang HJ, Lee JS, Lee YT, Lim SJ, Gauch H, Eun MY, McCouch SR (2007) Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci 47:2403-2417   DOI   ScienceOn
29 Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio Technology 9:957-962   DOI
30 Chung H-J, Ferl RJ (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 121:429-436   DOI
31 Cobb BG, Kennedy RA (1987) Distribution of alcohol dehydrogenase in roots and shoots of rice (Oryza sativa) and Echinochloa seedlings. Plant Cell Environ 10:633-638   DOI
32 Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17-36   DOI
33 Alpi A, Beevers H (1983) Effects of $O_2$ concentration on rice seedlings. Plant Physiol 7:30-34
34 Armstrong W, Brandle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neeri 43:307-358.   DOI
35 Aspart L, Got A, Delseny M, Mocquot B, Pradet A (1983) Adaptation of ribonucleic acid metabolism to anoxia in rice embryos. Plant Physiol 7:115-121
36 Xu Y, Buchholz WG, DeRose RT, Hall TC (1995) Characterization of a novel gene family from rice that encodes root-specific proteins. Plant Mol Biol 27:237-248   DOI
37 Zhang J, Van Toai T, Huynh L, Preiszner J (2000) Development of flooding tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed 6:135-144   DOI
38 Takahaski N (1978) Adaptive importance of mesocotyl and coleopile growth in rice under different moisture regimes. Australian J Pant Physiol 5:511-517   DOI
39 Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969-976   DOI
40 Thompson C, Fernandes C, De Souza O, De Freitas L, Salzano F (2010) Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes. J Mol Modeling 16:919-928   DOI
41 Turner F, Chen TC, McCauly GN (1981) Morphological development of rice seedling in water at controlled oxygen levels. Agronomy J 73:566-570   DOI
42 Uze M, Wunn J, Puonti-Kaerlas J, Potrykus I, Sautter C (1997) Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Sci 130:87-95   DOI
43 Vartepetian BB, Mazlik P, Lance C (1978) Lipid biosynthesis in rice coleoptiles grown in the presence or in the absence of oxygen. Plant Sci Lett 13:321-328   DOI
44 Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3-20   DOI
45 Voesenek LACJ, Benschop JJ, Bou J, Cox MCH, Groeneveld HW, Millenaar FF, Vreeburg RAM, Peeters AJM (2003) Interactions between plant hormones regulate submergenceinduced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205-211   DOI
46 Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peters AJM (2006) How plants cope with complete submergence. New Phytol 170:213-226   DOI
47 Xie Y, Wu R (1989) Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Bio 13:53-68   DOI
48 Raineri DM, Bonitto P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation in rice (Oryza sativa L.). Bio Technology 8:33-38   DOI
49 Ricard B, Mocquot B, Fournier A, Delseny M, Pradet A (1986) Expression of alcohol dehydrogenase in rice embryos under anoxia. Plant Mol Bio 7:321-329   DOI
50 Ritchie SW, Lui CHN, Sellmer JC, Kononowicz H, Hodges TK, Gelvin SB (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Trans Res 2:252-265   DOI
51 Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytosolic pH regulation in hypoxic maize root tips and its role in survival under anoxia. Proc Nat Acad Sci USA 81:33791-3383
52 Sallaud C, Meynard D, Boxtel JV (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396-1408   DOI
53 Sauter M (2000) Rice in deep water: How to take heed against a sea of troubles. Naturwissenschaften. 87:289-303   DOI
54 Setter TL, Ellis M, Laureles EV, Ella ES, Senadhira D, Mishra SB, Sarkarung S, Datta S (1997) Physiology and genetics of submergence tolerance in in rice. Ann Bot 79:67-77   DOI
55 Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 238:274-276
56 Shimomura S, Beevers H (1983) Alcohol dehydrogenase and an inactivator from rice seedlings. Plant Physiol 71:736-741   DOI
57 Tai HT, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Bio Reporter 8:297-303   DOI
58 Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettel R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369-1376   DOI
59 Lee S, Jeon JS, Jung KH, An G (1999) Binary vector for efficient transformation of rice. J Plant Biol 42:310-316   DOI
60 Li Z, Burow MD, Murai N (1990) High frequency generation of fertile transgenic rice plants after PEG-mediated protoplast transformation. Plant Mol Biol Rep 8:276-291   DOI
61 Liao CT, Lin CL (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc Repub China B 25:148-157
62 Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609-614   DOI
63 Mooney PA, Goodwin PB, Dennis ES, Liewellyn DJ (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Organ Cult 25:209-218
64 Mujer CV, Rumpho ME, Lin JJ, Kennedy RA (1993) Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. Plant Physiol 101:217-226   DOI
65 Mocquot B, Prat C, Mouches C, Pradet A (1981) Effect of anoxia on energy charge and protein synthesis in rice embryo. Plant Phy.siology 68:636-640   DOI
66 Narashimulu SB, Deng XB, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873-886   DOI
67 Pathuri IP, Reitberger IE, Hückelhoven R, Proels RK (2011) Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei. J Exp Bot in press
68 Perata P, Gugloelminetti L, Alpi A (1997) Mobilization of endorsperm reserves in cereal seeds under anoxia. Ann Bot 79:49-56   DOI