Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07029

Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase  

Kim, Nam Hee (Department of Applied Bioscience, Dong-A University)
Park, Ji-Hye (Department of Applied Bioscience, Dong-A University)
Chung, Eunsook (Department of Applied Bioscience, Dong-A University)
So, Hyun-Ah (Department of Applied Bioscience, Dong-A University)
Lee, Myung Hwan (Department of Applied Bioscience, Dong-A University)
Kim, Jin-Cheol (Department of Agricultural Chemistry, Chonnam National University)
Hwang, Eul Chul (Department of Applied Bioscience, Dong-A University)
Lee, Seon-Woo (Department of Applied Bioscience, Dong-A University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.2, 2016 , pp. 248-254 More about this Journal
Abstract
A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.
Keywords
Lipid metabolism; soil metagenome; wax ester synthase; wes;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. 1996. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165: 377-386.   DOI
2 Alvarez HM, Pucci OH, Steinbüchel A. 1997. Lipid storage compounds in marine bacteria. Appl. Microbiol. Biotechnol. 47: 132-139.   DOI
3 Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, et al. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2: 516-529.   DOI
4 Brady SF, Chao CJ, Handelsman J, Clardy J. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from cDNA. Org. Lett. 3: 1981-1984.   DOI
5 Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, et al. 2008. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl. Environ. Microbiol. 74: 723-730.   DOI
6 Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L. 2003. Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar. Biotechnol. 52: 579-583.
7 Bryn K, Jantzen E, Bovre K. 1977. Occurrence and patterns of waxes in Neisseriaceae. J. Gen. Microbiol. 102: 33-43.   DOI
8 Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, et al. 2001. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276: 38870-38876.   DOI
9 Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, et al. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69: 49-55.   DOI
10 Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, et al. 2000. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc. Natl. Acad. Sci. USA 97: 6487-6492.   DOI
11 Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR. 2002. Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148: 2951-2958.   DOI
12 El-Komy MH. 2014. Comparative analysis of defense response in chocolate spot-resistant and -susceptible faba bean(Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. Plant Pathol. J. 30: 355-366.   DOI
13 Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, et al. 2006. Isolation and biochemical characterization of two novel metagenome derived esterases. Appl. Environ. Microbiol. 72: 3637-3645.   DOI
14 Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685.   DOI
15 Gunawan ER, Basri M, Rahmani MB, Salleh AB, Rahman RNZ. 2004. Lipase-catalyzed synthesis of palm-based wax ester. J. Oleo Sci. 53: 417-477.   DOI
16 Handelsman J, Rondon MR, Brady SP, Clady J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245-R249.   DOI
17 Heilmann M, Iven T, Ahmann K, Homung E, Stymne S, Feussner I. 2012. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes. J. Lipid Res. 53: 2153-2161.   DOI
18 Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, et al. 2011. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet. 7: e1002219.   DOI
19 Holloway PJ. 1995. Waxes: chemistry, molecular biology and functions. Phytochemistry 39: 953-956.   DOI
20 Holtzapple E, Schmidt-Dannert C. 2007. Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J. Bacteriol. 189: 3804-3812.   DOI
21 Hong KS, Lim HK, Chung EJ, Park EJ, Lee MH, Kim JC, et al. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
22 Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A. 2006. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol. 72: 1373-1379.   DOI
23 Jaeger KE, Dijkstra BW, Reetz MT. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.   DOI
24 Jaeger KE, Egger T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.   DOI
25 Kalscheuer R, Steinbüchel A. 2003. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J. Biol. Chem. 278: 8075-8082.   DOI
26 Kim JS, Lim HK, Lee MH, Park J-H, Hwang EC, Moon BJ, Lee SW. 2009. Production of porphyrin intermediates in Escherichia coli carrying soil metagenome genes. FEMS Microbiol. Lett. 295: 42-49.   DOI
27 Lee MH, Hong KS, Malhotra S, Park JH, Hwang EC, Choi HK, et al. 2010. A new esterase3 EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88: 1125-1134.   DOI
28 Reiser S, Somerville C. 1997. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J. Bacteriol. 179: 2969-2975.   DOI
29 Lee MH, Lee SW. 2013. Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform. 11: 114-120.   DOI
30 Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726.   DOI
31 Sambrook J, Fritsch EF, Maniatis TA. 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY.
32 Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, et al. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547.   DOI
33 Rontani JF, Bonin PC, Volkman JK. 1999. Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl. Environ. Microbiol. 65: 221-230.
34 Russel NJ, Volkman JK. 1980. The effect of growth temperature and wax ester compositions in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174. J. Gen. Microbiol. 118: 131-141.
35 Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiber E, Banas A, et al. 2002. Storage lipid synthesis is non-essential in yeast. J. Biol. Chem. 277: 6478-6482.   DOI
36 Simon C, Daniel R. 2011. Metagenomic analysis: past and future trends. Appl. Environ. Microbiol. 77: 1153-1161.   DOI
37 Wältermann M, Steinbüchel A. 2005. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 187: 3607-3619.   DOI
38 Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE. 2006. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152: 2717-2725.   DOI
39 Steinbüchel A. 2001. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol. Biosci. 1: 1-24.   DOI
40 Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A. 2005. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J. Bacteriol. 187: 1369-1376.   DOI
41 Tao W, Lee MH, Yoon M-Y, Kim JC, Malhotra S, Wu J, et al. 2011. Characterization of two metagenome-derived esterase that reactivate chloramphenicol by counteracting chloramphenicol acetyltrasnferase. J. Microbiol. Biotechnol. 21: 1203-1210.   DOI
42 Tsujita T, Sumiyoshi M, Okuda H. 1999. Wax ester synthesizing activity of lipase. Lipids 34: 1159-1166.   DOI
43 Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, et al. 2005. Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol. Microbiol. 55: 750-763.   DOI
44 Wu LF, Lam X, Bird PD, Zheng H, Samuels L, Jetter R, Kunst L. 2008. Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol. 148: 97-107.   DOI