• Title/Summary/Keyword: length and density

Search Result 1,866, Processing Time 0.035 seconds

Determination of Airborne Fiber Size and Concentration in RCF Manufacturing and Processing Factories (세라믹 섬유 제조 및 가공 공정에서 발생된 공기중 섬유의 농도 및 크기 분포)

  • 신용철
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • Various man-made mineral fibers(MMMF) including refractory ceramic fiber(RCF) have been used widely in industries as insulation materials. The effect of fibrous dust on human health depends on fiber size, concentration (exposure level), and durability in biological system. Therefore, these parameters should be determined to evaluate accurately the potential risk of fibers on human health. The purpose of this study was to characterize the size of airborne fiber and the workers' exposure to airborne fibers in refractory ceramic fiber manufacturing and processing factories. Airborne fibers were collected on 25-mm mixed cellulose ester membrane filters at personal breathing zones, and analyzed by A and B counting rules of the National Institute for Occupational Safety and Health(NIOSH) Method # 7400. The average ratios of the fiber density by B rule to the fiber density by A rule was 0.84. This result indicates that the proportion of respirable fibers (<3 ${\mu}{\textrm}{m}$ diameter) in air samples was high. The average diameter and length of airborne fibers were 1.05${\mu}{\textrm}{m}$ and 35${\mu}{\textrm}{m}$, respectively. The average fiber concentrations (GM) of all personal samples was 0.26f/cc, and the average concentration was highest at blanket cutting and packing processes. The fifty seven percent of personal air samples was exceeded the proposed American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value(TLV), i.e. 0.2 f/cc. It was concluded that the RCF industrial workers had the higher potential health risk due to small fiber diameter, long fiber length, and high exposure level to the airborne fibers.

  • PDF

Influence of Rearing Environmental Factors on Intra-cohort Cannibalism and Growth of Fry in Cultured Puffer Takifugu obscurus (양식산 황복 (Takifugu obscurus) 치어의 군집 내 공식 및 성장에 있어 사육환경 인자별 영향)

  • Kang, Duk-Young;Kang, Hee-Woong;Kim, Hyo-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.251-258
    • /
    • 2011
  • To investigate whether the rearing environmental factors (size heterogeneity, rearing density, and feeding frequency) affect the growth and cannibalism of fry in cultured puffer Takifugu obscurus, we conducted three experiments. To examine size effects, we used small (total length [TL] $26.0{\pm}0.5\;mm$, body weight [BW] $0.18{\pm}0.01\;g$), medium (TL $23.1{\pm}0.1\;mm$, BW $0.28{\pm}0.01\;g$), large (TL $26.0{\pm}0.2\;mm$, BW $0.48{\pm}0.01\;g$) and small-large size combination groups. For density, we used size-matched puffers (TL $25.0{\pm}0.5\;mm$, BW $0.53{\pm}0.03\;g$) and five density were examined ranging from 1.43 to 7.14 individuals/L. For the feeding frequency, we also used size-matched fry and feeding frequencies of three times/2 days, one time/day, two times/day, three times/day. We ran each experiment in triplicate and investigated the survival rate, daily food intake (DFI), feed efficiency (FE), and daily growth rate (DGR). The growth of the puffers increased with increasing size, density, and feeding frequency, while cannibalism increased with a greater size gap, density and lower feeding frequency. Therefore, we concluded that size, rearing density, and feeding frequency are major factors influencing growth and cannibalism of the puffer, T. obscurus.

Effects of Plant Density on Growth and Yield of Sweet Corn Hybrid (재식밀도가 단옥수수의 생육 및 이삭 수량에 미치는 영향)

  • Park, Seung-Ue;Park, Keun-Yong;Kang, Young-Kil;Moon, Hyeon-Gui;Jong, Seung-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.92-96
    • /
    • 1987
  • A sweet corn hybrid. ‘Golden Elite 70’ was grown at four plant densities of 4.500, 5.500, 6,500 and 7,500 plants per 10 ares under early and ordinary season cultivations, respectively, to determine effects of plant density on growth and yield of sweet corn. Plant and ear heights and ear size were greater, and ear number per plant was less at ordinary season cultivation compared to early season cultivation. However. ear weight per 10 ares were similar between two cultural practices. There were no significant interactions between cultural practice and plant density for plant height, yield and yield components except ear length. Plant density did not affect silking date, and plant and ear heights and did not show consistent trend in ear size. Ear number per plant decreased with increasing plant density. Ear number and weight per 10 ares increased as plant density increased up to 6,500 plants per 10 ares and tended to decrease at 7,500 plants per 10 ares. The results indicate that the optimum plant density for sweet corn would be around 6,500 plants per 10 ares.

  • PDF

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

Spray and Combustion Characteristics of n-dodecane in a Constant Volume Combustion Chamber for ECN Research (ECN 연구용 고온 고압 정적 연소실에서의 n-dodecane 분무 및 연소 특성)

  • Kim, Jaeheun;Park, Hyunwook;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.188-196
    • /
    • 2014
  • The spray and combustion characteristics of n-dodecane fuel were investigated in a CVCC (constant volume combustion chamber). The selection of ambient conditions for the spray followed ECN (engine combustion network) guidelines, which simulates the ambient condition of diesel engines at start of fuel injection. ECN is a collaboration network whose main objective is to establish an internet library of well-documented experiments that are appropriate for model validation and the advancement of scientific understanding of combustion at conditions specific to engines. Therefore repeatability of the experiments with high accuracy was important. The ambient temperature was varied from 750 to 930 K while the density was fixed at around $23kg/m^3$. The injection pressure of the fuel was varied from 500 to 1500 bar. The spray was injected in both non-reacting ($O_2$ concentration of 0%) and reacting conditions ($O_2$ concentration of 15%) to examine the spray and the combustion characteristics. Direct imaging with Mie Scattering was used to obtain the liquid penetration length. Shadowgraph was implemented to observe vapor length and lift-off length at non-reacting and reacting conditions, respectively. Pressure data was analyzed to determine the ignition delay with respect to the spray and ambient conditions.

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

Effect of the Chemical Treatment and Fiber Length of Kenaf on Physical Properties of HDPE/Kenaf/Expandable Microcapsule (HDPE/케나프/열팽창성 마이크로 캡슐의 물성에 미치는 섬유 길이 및 화학처리 영향)

  • Ku, Sun Gyo;Lee, Jong Won;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • High density polyethylene (HDPE)/kenaf fiber (KF) composites included two types of KF with different lengths were fabricated by using a twin screw extruder. A thermally expandable microcapsule (EMC) was used to form HDPE/KF. The KF lengths were 0.3 mm and 3 mm. The contents of KF and EMC were fixed at 20 wt% and 5 wt%, respectively. From FT-IR data of KF, which underwent chemical treatment, peaks around 1700 and $1300cm^{-1}$ decreased. This might be caused by the reduction of lignin and hemicellulose due to the chemical treatment of KF. Based on the specific gravity, thermal stability and tensile property, physical properties of the composites with a 3 mm fiber were good. However, if the fiber is longer, poor appearance might be caused due to the thermal degradation during processing. Thus, the adequate length of KF should be chosen to maintain the appearance and physical properties for industrial applications of HDPE/KF/EMC composites. The tensile strength for 0.3 mm fiber treated with chemicals increased slightly.

Changes of an endangered population of Iris dichotoma after conservation translocation in Taeanhaean National Park, Korea

  • Dakyum ROH;Geun-Hye GANG;Dae Hun CHOI;Byung Bu KIM;Hyun-Jin JUNG;Dae Seob SHIN;Hyeon Seon RYU;Chang Ho CHOI;Heehyeok KANG;Yowhan SON;Soonku SO
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Sustainable habitats play a significant role in determining the survival and habitat preservation of endangered species. To conserve the endangered species Iris dichotoma Pall. and its habitat in Taeanhaean National Park, we collected seeds from a natural population and germinated and propagated them in a greenhouse. In 2019, the propagated individuals of I. dichotoma were transplanted at two study sites in Taeanhaean National Park. After conservation translocation, annual monitoring was conducted from 2020 to 2022, and factors related to the survival and growth of I. dichotoma (clonal propagation rate [%], the flowering rate [%], the population density [individual/m2], the maximum leaf bundle length [height; cm], the maximum leaf bundle width [cm], and the pedicel length [cm]) were measured. According to the results of the monitoring of the flowering and fruiting periods for three years after transplantation, 82.4% of individuals in total were found to have survived. During 2020 to 2022, the mean population density (individual/m2) increased from 0.36 to 0.42 and the size of the leaf bundle length and the width both decreased compared to the corresponding figures in 2019 (p < 0.05). According to the findings here, the transplanted population of I. dichotoma is considered to have adapted successfully to its new site in Taeanhaean National Park.

DENSITY DEPENDENT GRWOTH AND MORTALITY OF MANILA CLAM Ruditapes philippinarum REARED IN CAGES IN GOMSO-BAY, KOREA

  • Park, Kyung-Il;Yang, Hyun-Sung;Kang, Do-Hyung;Choi, Kwang-Sik
    • The Korean Journal of Malacology
    • /
    • v.26 no.1
    • /
    • pp.91-95
    • /
    • 2010
  • Density-dependant growth and mortality rate of Manila clam Ruditapes philippinarum reared in net cages was investigated in Gomso Bay, Korea where unusually high mortality of clams has been reported. For the experiment, four groups of clam cages were set up with a density of $2,000clams/m^2$ (group A), $1,000clams/m^2$ (group B), $500clams/m^2$ (group C) and $100clams/m^2$ (group D). Mortality and growth of clams in each experimental cage was monitored biweekly from May 2001 to September 2001. Highest mortality in group A was observed in late August, while highest mortality of rest groups was observed in early September. In September, the cumulative mortality in group A was 99%, while it was 93.2% in group B, 91.2% in group C and 88% in group D. Shell growth rate of clams in thecages was found to be density dependent; monthly shell length increase was 0.67 mm in group A, 1.33 mm in group B, 1.63 mm in group C and 1.71 mm in group D. Our study indicated that clam growth and mortality in the Bay is density dependent and the growth and survival rate is negatively correlated with the density.

Micro-computed tomography evaluation of the effects of orthodontic force on immature maxillary first molars and alveolar bone mineral density of Sprague-Dawley rats

  • Jingwei Wang;Ruofang Zhang;Zhuoying Zhang;Chao Geng;Yanpeng Zhang
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.205-216
    • /
    • 2023
  • Objective: To investigate changes in the immature teeth of Sprague-Dawley rats during orthodontic treatment and to explore the changes in the peri-radicular alveolar bone through micro-computed tomography (CT). Methods: Twenty-five 26-day-old male Sprague-Dawley rats were included. The maxillary left first molar was moved mesially under a continuous force of 30 cN, and the right first molar served as the control. After orthodontic treatment for 7, 14, 21, 28, and 42 days, the root length, tooth volume, and alveolar bone mineral density (BMD) around the mesial root were measured through micro-CT. Results: The immature teeth continued to elongate after application of orthodontic force. The root length on the force side was significantly smaller than that on the control side, whereas the differences in the volume change between both sides were not statistically significant. Alveolar bone in the coronal part of the compression and tension sides showed no difference in BMD between the experimental and control groups. The BMD of the experimental group decreased from day 14 to day 42 in the apical part of the compression side and increased from day 7 to day 42 in the apical part of the tension side. The BMD of the experimental group decreased in the root apex part on day 7. Conclusions: The root length and volume of immature teeth showed continued development under orthodontic forces. Alveolar bone resorption was observed on the compression side, and bone formation was observed on the tension side.