• Title/Summary/Keyword: leg trajectory

Search Result 72, Processing Time 0.03 seconds

Smooth Walking Robot Using Genetic Algorithm (유전알고리즘을 이용한 유연한 보행로봇)

  • 한경수;김상범;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.450-453
    • /
    • 2002
  • This paper is concerned with smooth walking robot using genetic algorithm. The new walking algorithm is proposed and we simulated and experimented the algorithm. We suggested the leg trajectory algorithm and balancing trajectory algorithm by applying genetic algorithm. First the leg trajectory algorithm generated the smooth trajectory. Also the balancing trajectory generated the optimal trajectory. We compared results with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

TowerWalker: Speed improvement through trajectory optimization and maximally elongated leg (타워워커: 보행 경로 최적화와 극대화된 다리 길이를 통한 속도 향상)

  • Nam, Jiwon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.389-396
    • /
    • 2016
  • In order to maximize the speed of Theo Jansen Mechanism in an given design space and prototyping material, the trajectory path was maximized according to several literature reviews, and the lower leg was elongated maximally in order to minimize the shift between support phase and transfer phase.

  • PDF

Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming (실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법)

  • Park, Kyeongduk;Choi, Jungsu;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

A Study on the Trajectory Optimization Planning of Biped Walking Machine (이족 보행 로봇의 궤적의 최적화 계획에 관한 연구)

  • 김창부;조현석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

An Efficient Stair Locomotion Method of Quadruped Robot with Mechanism of Insectile Leg (곤충형 다리 구조를 갖는 4족 로봇의 효율적인 계단 보행 방법)

  • Byun, Jae-Oh;Choi, Yoon-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.395-402
    • /
    • 2015
  • In this paper, we propose an efficient gait trajectory generation method for the static stair climbing of a quadruped robot with mechanism of insectile legs, which has no collision with staris. First, we derive the kinematic and inverse models of a quadruped robot using the algebraic and geometrical methods, respectively. In the proposed method, we generate the stair locomotion trajectory of a sine wave after lifting a leg from the start position, and then determine the coefficient of the generated trajectory to avoid the collision with stairs. In addition, we make the gait sequence for the stable stair locomotion. Finally, we verify the effectiveness and applicability of the proposed stair locomotion method through computer simulations.

ZPM Compensation and Impedance Control for Improving Walking Stability of Biped Robots (2족 보행 로봇의 보행 안정성 향상을 위한 ZPM보상 및 임피던스 제어)

  • Jeong, Ho-Am;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1007-1015
    • /
    • 2000
  • This paper proposes an adaptive trajectory generation strategy of using on-line ZMP information and an impedance control method for biped robots. Since robots experience various disturbances during their locomotion, their walking mechanism should have the robustness against those disturbances, which requires an on-line adaptation capability. In this context, an on-line trajectory planner is proposed to compensate the required moment for recovering stability. The ZMP equation and sensed ZMP information are used in this trajectory generation strategy. In order to control a biped robot to be able to walk stably, its controller should guarantee stable footing at the moment of feet contacts with the ground as well as maintaining good trajectory tracking performance. Otherwise, the stability of robot will be significantly compromised. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper. proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. In the proposed control scheme, the constrained leg is controlled by impedance control using the impedance model with respect to the base link. Computer simulations performed with a 3-dof environment model that consists of combination of a nonlinear and linear compliant contact model show that the proposed controller performs well and that it has robustness against unknown uneven surface. Moreover, the biped robot with the proposed trajectory generator can walk even when it is pushed with a certain amount of external force.

A Method of Adaptive Leg-end Trajectory Control for a Five-legged Walking Robot

  • Tsunehon, Honda;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.3-83
    • /
    • 2001
  • A method to adaptively control leg-ends trajectories of a five-legged walking robot, Cepheus-2, has been developed in terms of a kind of a table look-up method. Cepheus-2 is a five-legged robot with a pentagonal body with two joints of each leg. The robot control system has a hierarchical autonomic-integrated architecture with a main computer (PC), a manager and servo modules. Being given the goals of walking by the main computer, the manager module assigns a type of leg-end trajectories of which data are described with the work space coordinates for the legs. Every servo module generates the joint angle data. In steady walking of the robot on flat floor without obstacle, two joints have to generate the assigned trajectory and five legs ...

  • PDF

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.