• 제목/요약/키워드: leg stiffness

검색결과 71건 처리시간 0.026초

Lower Extremity Stiffness Characteristics in Running and Jumping: Methodology and Implications for Athletic Performance

  • Ryu, Joong Hyun
    • 한국운동역학회지
    • /
    • 제28권1호
    • /
    • pp.61-67
    • /
    • 2018
  • Objective: The human body is often modelled as a spring-mass system. Lower extremity stiffness has been considered to be one of key factor in the performance enhancement of running, jumping, and hopping involved sports activities. There are several different classification of lower extremity stiffness consisting of vertical stiffness, leg stiffness, joint stiffness, as well as muscle and tendon stiffness. The primary purpose of this paper was to review the literature and describe different stiffness models and discuss applications of stiffness models while engaging in sports activities. In addition, this paper provided a current update of the lower extremity literature as it investigates the relationships between lower extremity stiffness and both functional performance and injury. Summary: Because various methods for measuring lower extremity stiffness are existing, measurements should always be accompanied by a detailed description including type of stiffness, testing method and calculation method. Moreover, investigator should be cautious when comparing lower extremity stiffness from different methods. Some evidence highlights that optimal degree of lower extremity stiffness is required for successful athletic performance. However, the actual magnitude of stiffness required to optimize performance is relatively unexplored. Direct relationship between lower extremity stiffness and lower extremity injuries has not clearly been established yet. Overall, high stiffness is potentially associate risk factors of lower extremity injuries although some of the evidence is controversial. Prospective injures studies are necessary to confirm this relationship. Moreover, further biomechanical and physiological investigation is needed to identify the optimal regulation of the lower limb stiffness behavior and its impact on athletic performance and lower limb injuries.

호피 시 착지방법에 따른 하지 강성도 (Lower extremity stiffness over different landing methods during hopping)

  • 이정주;손종상;김정윤;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

LMU용 일래스토머릭 베어링의 강성평가 (Stiffness evaluation of elastomeric bearings for leg mating unit)

  • 한동섭;장시환;이권희
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.106-111
    • /
    • 2017
  • 본 연구에서는 해양구조물의 상부(top side) 구조물을 설치할 때 필요한 장치인 LMU(Leg Mating Unit)의 강성을 구조해석을 통하여 검토하였다. 이것은 구조물의 지지 점에 장착되어 설치 시 충격을 흡수하고 안정적으로 구조물을 지지하는 데 사용된다. LMU는 가운데가 비어있는 원통형 구조로서 수직 하중을 지지하기 위해서 일래스토머릭 베어링(Elastomeric Bearing, 이하 EB)과 철판을 여러 층으로 적층한다. EB의 강성은 기본적으로 베어링의 크기에 영향을 받지만, 동일한 크기에서도 내부 보강판의 적층 수에 따라 강성이 변하게 된다. 일반적으로 보강판과 압축 강성 사이의 관계를 분석하여 적합한 설계를 한다. EB의 강성은 변위를 제어하면서 반력을 산출하는 방식으로 분석을 한다. 먼저 보강판의 크기와 압축 강성 관계를 검토하고, 보강판의 적층 수와 압축 강성 관계를 검토한다. LMU는 장착되는 지점마다 다른 하중이 요구된다. 해석을 통해 각 지점에서 동일한 변형이 발생하도록 압축 강성을 다르게 설계하는 것이 목표이다. 본 연구의 유한요소해석을 위하여 상용 프로그램인 ANSYS를 이용하였다.

저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구 (Design Study of 3 Segment Leg with Stable Region at low and high Speed Running)

  • 권오석;이동하
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 - (Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck -)

  • 한기봉;어은경;오승현;이순혁;김철웅
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권2호
    • /
    • pp.153-165
    • /
    • 2013
  • 기존의 보행분석 연구들은 하지를 하나의 스프링으로 간주하였다. 만약 슬관절 신전을 보조할 수 있는 슬관절 액추에이팅 메커니즘을 개발할 수 있다면 보행에 필요한 탄성-변형률에너지를 혁신적으로 저장-방출할 수 있고, 그 결과 보행 중 하지강성은 더욱 증가할 것이다. 게다가 족관절 액추에이팅 메커니즘까지 추가되어 있다면 슬관절 액추에이터에 의한 과도한 인공하지강성을 능동적이고 적절한 수준으로 보상해주는 기전으로 작동할 것이다. 만약 가속도에 의한 보행속도 증가를 방지하기 위해 인위적 감속통제를 작동시킨다면 불필요한 운동에너지의 방출이 발생되고 하지강성 액추에이터의 실효성은 의심을 받게 된다. 따라서 본 저자는 보행속도를 2개의 세그먼트에 의한 상대 각속도 조절기법을 이용하여 하지강성을 증가시킨다는 기본개념으로 슬-족관절 액추에이터 시스템을 개발하였다. 또한 족관절에 슬관절 액추에이팅에 대한 보상기전이 존재하는 경우, 족관절의 보상기전이 중족지절관절 경사각 및 보행속도 변화에 미치는 상호영향을 연구하였다.

고유치를 이용한 병렬형 기구의 강성범위 해석 (Analysis of Stiffness Bounds for Parallel Devices Using Eigenvalues)

  • 김택수;김현;홍대희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.699-702
    • /
    • 2000
  • In order to use a parallel device fur machine tool feed mechanism, it is very important to analyze its stiffness over the workspace. Generally, the stiffness of a rod varies with its length. In this paper, the stiffness of the leg is modeled as a linear function. With the linear stiffness model, the methods that can determine stiffness bounds and max/min stiffness directions are presented utilizing eigenvalues and eigenvectors of the stiffness matrix. The stiffness variation along a tool-path and stiffness mapping over a workspace are presented with cubic-shaped parallel device which is originally designed for machine tool feed mechanism.

  • PDF

하지길이 차이가 요통과 관절경직에 미치는 영향 (The Effects of leg length difference on Low Back Pain and joint stiffness)

  • 김동현;김석범;백수정;남태호;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제14권4호
    • /
    • pp.55-63
    • /
    • 2002
  • Human body balances right and left leg centering around pelvis and spine. Therefore, imbalance of lower extremity means disequilibrium of the body. The difference of lower extremity length can cause a number of clinic symptoms including scoliosis, low back pain, sacroiliac pain, and sports injury. In this study, we tried to analyze low back pain and joint stiffness resulting from the difference of lower extremity length. The subjects were 80 male students who are 20-25 years old. The results of this study were as following: 1. Low back pain depending on the difference of lower extremity length One group which the difference of lower extremity length is above 12mm showed average different length as 18.0mm, the other group which one is below 12mm showed as 6.3mm. A group of above 12mm had more severe low back pain than a group of below 12mm. 2. Joint stiffness depending on the difference of lower extremity length A group of above 12mm had more severe joint stiffness than a group of below 12mm.

  • PDF