• Title/Summary/Keyword: lectin

Search Result 374, Processing Time 0.024 seconds

Effect of Clonorchis sinensis Excretory-secretory Product on the Cultured SD Rat Bile Duct Fibroblast (배양된 흰쥐 담관 섬유모세포에 대한 간흡충 분비배설 물질의 영향)

  • Kwon, Jung-Nam;Min, Byoung-Hoon;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • Clonorchis sinensis is the most important widely distributed parasite of the human bile duct in East Asia and the most prevalent parasitic helminth in Korea. The prevalence rate of human clonorchiasis has remained at about 2.9% in Korea. C. sinensis induces dilatation of the duct, hyperplasia of the mucosa, metaplasia or neoplasia of the mucosal epithelium, periductal inflammation and fibrosis, and thickening of the ductal wall. Fibroblast are the most common cells in connective tissue and are responsible for the synthesis of extracellular matrix components. The fibrosis associated with chronic inflammation and injury may also contribute to cholangiocarcinoma pathogenesis, particularly through an increase in extracellular matrix components, which participate in the regulation of bile duct differentiation during development. In this study, ultrastructural changes, the distribution of lectin receptors and actin protein in cultured SD rat bile duct fibroblast after infection of C. sinensis were observed. Experimental group had been divided into four groups: normal bile duct fibroblast cultured in basal media (G1); C. sinensis infected bile duct fibroblast cultured in basal media (G2); normal bile duct fibroblast cultured in basal media containing excretory-secretory product (ESP) (G1-1); C. sinensis infected bile duct fibroblast cultured in basal media containing ESP (G2-1). Overall, once a host is infected by C. sinensis, it affects the host to the extent that sialic acid of ductal fibroblast is increased. Number of cytoplasmic process of SD rat bile duct fibroblast was increased. Actin protein and sialic acid were located in cell surface. Fibroblast induced by C. sinensis was not recovered to normal fibroblast. The cytoplasm bulk and cytoplasmic process were increased whereas the growth rate of the fibroblast of infected SD rat was reduced rather than that of normal fibroblast. In result, it inhibits fibroblast proliferation and increases actin protein on fibroblast cytoplasm, and so causes fibroblast metamorphosis and cellular mutation.

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.