• 제목/요약/키워드: least-square estimation

검색결과 630건 처리시간 0.039초

Coordlinate Transformation Parameter Estimation for Korean Seas and Islands

  • KWON Jay Hyoun;BAE Tae-Suk;CHOI Yoon-Soo
    • Korean Journal of Geomatics
    • /
    • 제5권1호
    • /
    • pp.21-26
    • /
    • 2005
  • According to revisions of survey law taking effect on January 1, 2003, the Korean geodetic datum has been changed from a local geodetic to a world geodetic system. In this study, the datum transformation parameters especially for the maritime geographical data are determined. From database constructed through MGIS, a total of 492 coordinate pairs were selected and used in the parameter determination after outlier testing. Based on the parameter estimation, the Molodensky model is selected for datum transformation. For higher accuracy, Application of network optimization and a least squares collocation with Gaussian model has resulted in the accuracy better than 15 cm in coordinate transformation.

  • PDF

보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계 (A Modified Weighted Least Squares Approach to Range Estimation Problem)

  • 황익호;나원상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

DSM Monitoring을 위한 확산 모델의 계수 추정 (Parameter estimation of the Diffusion Model for Demand Side Management Monitoring System)

  • 최청훈;정현수;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1073-1075
    • /
    • 1998
  • This paper presents the method of parameter estimation of diffusion model for monitoring Demand-Side Management Program. Bass diffusion model was applied in this paper, which has different values according to parameters ; coefficients of innovation, imitation and potential adopters. Though it is very important to estimate three parameter, there are no empirical results in practice. Thus, this paper presents the method of parameter estimation in case of few data with constraints to reduce the possibility of bad estimation. The constraints are empirical results or expert's decision. Case studies show the diffusion curves of high-efficient lighting and also forecasting of the peak value for power demand considering diffusion of high-efficient lighting, the feedback and least-square parameter estimation method used in this paper enable us to evaluate the status and forecasting of the effect of DSM program.

  • PDF

고속도로 네트워크에서 동적기종점수요 추정기법 비교연구 (Comparison of Dynamic Origin Destination Demand Estimation Models in Highway Network)

  • 이승재;조범철;김종형
    • 대한교통학회지
    • /
    • 제18권5호
    • /
    • pp.83-97
    • /
    • 2000
  • 직접적인 신호제어 및 정보제공을 이용한 교통혼잡의 완화는 링크수준(Link-level)의 자료와 통행수준(Trip-level)의 자료를 동시에 이용하는 것이 효율적이나, 통행수준의 자료인 교통수요의 기점과 종점, 그리고 출발시간 등이 검지체계를 통해서 직접적으로 얻을 수 없어 이를 간접적으로 추정하는 것이 필요하다. 따라서, 본 연구의 목적은 기존의 기종점 추정 모형과는 달리, 교통류 시뮬레이션 모형이나 기종점 수요에 대한 시계열자료 등의 사전정보 없이도 링크교통량만을 가지고도 해당 네트워크에 가능한 모든 O-D조합에 대한 분할비를 동시에 시간 효율적으로 추정 가능한 모형을 개발, 비교하는 것이다 이 모형에는 비통행배정기반 모형에 적합한 칼만필터를 베이지안 갱신법에 기초하여 개발하고 최소자승법과 이를 토대로한 정규화 최소자승법도 함께 제시하였다. 본 연구에서 개발한 3가지의 모형을 가상의 고속도로 네트워크에 적용한 결과, 갑작스러운 수요 변화를 가지는 교통수요 패턴과 첨두를 3개 가지는 하루 24시간 교통수요 패턴에도 적응성 있는 결과를 보였다. 따라서, 본 모형은 연속류에서 수요관리 및 제어, 여행시간 예측과 동적통행배정, 차종분류 등의 기초적인 자료획득을 위해 사용될 수 있을 것으로 판단된다.

  • PDF

Estimation of carcass weight of Hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network

  • Lee, Dae-Hyun;Lee, Seung-Hyun;Cho, Byoung-Kwan;Wakholi, Collins;Seo, Young-Wook;Cho, Soo-Hyun;Kang, Tae-Hwan;Lee, Wang-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1633-1641
    • /
    • 2020
  • Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.

상관성과 단순선형회귀분석 (Correlation and Simple Linear Regression)

  • 박선일;오태호
    • 한국임상수의학회지
    • /
    • 제27권4호
    • /
    • pp.427-434
    • /
    • 2010
  • Correlation is a technique used to measure the strength or the degree of closeness of the linear association between two quantitative variables. Common misuses of this technique are highlighted. Linear regression is a technique used to identify a relationship between two continuous variables in mathematical equations, which could be used for comparison or estimation purposes. Specifically, regression analysis can provide answers for questions such as how much does one variable change for a given change in the other, how accurately can the value of one variable be predicted from the knowledge of the other. Regression does not give any indication of how good the association is while correlation provides a measure of how well a least-squares regression line fits the given set of data. The better the correlation, the closer the data points are to the regression line. In this tutorial article, the process of obtaining a linear regression relationship for a given set of bivariate data was described. The least square method to obtain the line which minimizes the total error between the data points and the regression line was employed and illustrated. The coefficient of determination, the ratio of the explained variation of the values of the independent variable to total variation, was described. Finally, the process of calculating confidence and prediction interval was reviewed and demonstrated.

트랜스패런트 다중 홉 릴레이를 갖는 OFDM 기반 셀룰러 시스템을 위한 채널 추정 기법 (Channel Estimation Techniques for OFDM-based Cellular Systems with Transparent Multi-hop Relays)

  • 우경수;유현일;김영준;이희수;조용수
    • 한국통신학회논문지
    • /
    • 제32권8A호
    • /
    • pp.813-819
    • /
    • 2007
  • 본 논문에서는 트랜스패런트(transparent) 모바일 다중 홉 릴레이(Mobile Multi-hop Relay; MMR)를 갖는 OFDM 기반 셀룰러 시스템에서 발생하는 전파 지연(propagation delay)의 영향을 분석한다. 또한, 수율 상승(throughput enhancement; TE) 또는 상호협력 전송(cooperative transmission)을 위한 MMR을 갖는 OFDM 시스템에서 전파 지연에 대한 영향을 극복할 수 있는 LS 채널 추정 기법과 MMSE 채널 추정 기법을 제안한다. 본 논문에서 제안하는 채널 추정 기법은 TE MMR 시스템 또는 상호협력 MMR 시스템에서 전파 지연으로 인한 채널 추정 성능 열화 현상을 극복할 수 있다. 모의실험을 통해 MSE와 BER 측면에서 본 논문에서 제안하는 기법이 기존 기법보다 우수함을 보인다.

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters

  • Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.813-821
    • /
    • 2018
  • The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.