• Title/Summary/Keyword: least squares method

Search Result 1,455, Processing Time 0.031 seconds

A Generalized Partly-Parametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.401-409
    • /
    • 2006
  • We consider a generalized partly-parametric additive risk model which generalizes the partly parametric additive risk model suggested by McKeague and Sasieni (1994). As an estimation method of this model, we propose to use the weighted least square estimation, suggested by Huffer and McKeague (1991), for Aalen's additive risk model by a piecewise constant risk. We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least squares method.

  • PDF

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

A Study on Support Vectors of Least Squares Support Vector Machine

  • Seok, Kyungha;Cho, Daehyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.873-878
    • /
    • 2003
  • LS-SVM(Least-Squares Support Vector Machine) has been used as a promising method for regression as well as classification. Suykens et al.(2000) used only the magnitude of residuals to obtain SVs(Support Vectors). Suykens' method behaves well for homogeneous model. But in a heteroscedastic model, the method shows a poor behavior. The present paper proposes a new method to get SVs. The proposed method uses the variance of noise as well as the magnitude of residuals to obtain support vectors. Through the simulation study we justified excellence of our proposed method.

A new classification method using penalized partial least squares (벌점 부분최소자승법을 이용한 분류방법)

  • Kim, Yun-Dae;Jun, Chi-Hyuck;Lee, Hye-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.931-940
    • /
    • 2011
  • Classification is to generate a rule of classifying objects into several categories based on the learning sample. Good classification model should classify new objects with low misclassification error. Many types of classification methods have been developed including logistic regression, discriminant analysis and tree. This paper presents a new classification method using penalized partial least squares. Penalized partial least squares can make the model more robust and remedy multicollinearity problem. This paper compares the proposed method with logistic regression and PCA based discriminant analysis by some real and artificial data. It is concluded that the new method has better power as compared with other methods.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • Yang, Bo Seok;Ju, Ho Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.108-108
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

Balancing of a Rigid Rotor using Genetic Algorithms (유전 알고리즘을 이용한 강성회전체의 평형잡이)

  • 양보석;주호진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.40-47
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.

  • PDF

A Study on the Adjustment of Precise Leveling Nets by the Method of Dynamic Least Squares (동적최소(動的最小)제곱법(法)에 의한 정밀수준강(精密水準綱)의 조정(調整))

  • Lee, Kye Hak;Jang, Ji Won;Kang, Hee Bog;Sung, Soo Lyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.177-184
    • /
    • 1988
  • The method of least squares has been applied to the static data, but it was not applications for the processing of observed values accompaning real-time variation. In this paper, having been considered all observations to be the function of time, leveling nets were analized dynamically by introducing the concept of time to conventional method of least squares. As a results, the method of dynamic least squares was well applicable to the adjustment of leveling nets.

  • PDF

An Accurate Estimation of a Modal System with Initial Conditions (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1694-1700
    • /
    • 2004
  • In this paper, we propose the AWLS/MFT (Adaptive Weighed Least Squares/ Modulation Function Technique) devised by A. E. Pearson et al. for the transfer function estimation of a modal system and investigate the performance of several algorithms, the Gram matrix method, a Luenberger Observer (LO), Least Squares (LS), and Recursive Least Squares (RLS), for the estimation of initial conditions. With the benefit of the Modulation Function Technique (MFT), we can separate the estimation problem into two phases: the transfer function parameters are estimated in the first phase, and the initial conditions are estimated in the second phase. The LO method produces excellent IC estimates in the noise free case, but the other three methods show better performance in the noisy case. Finally, we compared our result with the Prony based method. In the noisy case, the AWLS and one of the three methods - Gram matrix, LS, and RLS- show better performance in the output Signal to Error Ratio (SER) aspect than the Prony based method under the same simulation conditions.

  • PDF

Multiclass Classification via Least Squares Support Vector Machine Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • In this paper we propose a new method for solving multiclass problem with least squares support vector machine(LS-SVM) regression. This method implements one-against-all scheme which is as accurate as any other approach. We also propose cross validation(CV) method to select effectively the optimal values of hyper-parameters which affect the performance of the proposed multiclass method. Experimental results are then presented which indicate the performance of the proposed multiclass method.