• Title/Summary/Keyword: least squares

Search Result 2,607, Processing Time 0.025 seconds

A Channel Equalization Algorithm Using Neural Network Based Data Least Squares (뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity (탄소성 최소 제곱 수식화와 이를 이용한 무요소법)

  • Youn Sung-Kie;Kwon Kie-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.

Noisy label based discriminative least squares regression and its kernel extension for object identification

  • Liu, Zhonghua;Liu, Gang;Pu, Jiexin;Liu, Shigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2523-2538
    • /
    • 2017
  • In most of the existing literature, the definition of the class label has the following characteristics. First, the class label of the samples from the same object has an absolutely fixed value. Second, the difference between class labels of the samples from different objects should be maximized. However, the appearance of a face varies greatly due to the variations of the illumination, pose, and expression. Therefore, the previous definition of class label is not quite reasonable. Inspired by discriminative least squares regression algorithm (DLSR), a noisy label based discriminative least squares regression algorithm (NLDLSR) is presented in this paper. In our algorithm, the maximization difference between the class labels of the samples from different objects should be satisfied. Meanwhile, the class label of the different samples from the same object is allowed to have small difference, which is consistent with the fact that the different samples from the same object have some differences. In addition, the proposed NLDLSR is expanded to the kernel space, and we further propose a novel kernel noisy label based discriminative least squares regression algorithm (KNLDLSR). A large number of experiments show that our proposed algorithms can achieve very good performance.

The Geolocation Based on Total Least Squares Algorithm Using Satellites (위성을 이용한 Total Least Squares 기반 신호원 측위 알고리즘)

  • 박영미;조상우;전주환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.255-261
    • /
    • 2004
  • The problem of geolocation using multiple satellites is to determine the position of a transmitter located on the Earth by processing received signals. The specific problem addressed in this paper is that of estimating the position of a stationary transmitter located on or above the Earth's surface from measured time difference of arrivals (TDOA) by a geostationary orbiting (GSO) satellite and a low earth orbiting (LEO) satellite. The proposed geolocation method is based on the total least squares (TLS) algorithm. Under erroneous positions of the satellites together with noisy TDOA measurements, the TLS algorithm provides a better solution. By running Monte-Carlo simulations, the proposed method is compared with the ordinary least squares (LS) approach.

System Identification by Adjusted Least Squares Method (ALS법에 의한 시스템동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Chung, Hwung-Hwan;Jo, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2216-2218
    • /
    • 2002
  • A system identification is to measure the output in the presence of a adequate input for the controlled system and to estimate the mathematical model in the basic of input output data. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input-output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input-output case with the observed noise. In recent the adjusted least squares method is suggested as a consistent estimation method in the system identification not with the observed noise input but with the observed noise output. In this paper we have developed the adjusted least squares method from the least squares method and have made certain of the efficiency in comparing the estimating results with the generating data by the computer simulations.

  • PDF

Error in Variable FIR Typed System Identification Using Combining Total Least Mean Squares Estimation with Least Mean Squares Estimation (입출력 변수에 부가 잡음이 있는 FIR형 시스템 인식을 위한 견실한 추정법에 관한 연구)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • FIR type system identification with noisy input and output data can be solved by a total least squares (TLS) estimation. However, the performance of the TLS estimation is very sensitive to the ratio between the variances of the input and output noises. In this paper, we propose an iterative convex combination algorithm between TLS and least squares (LS). This combined algorithm shows robustness against the noise variance ratio. Consequently, the practical workability of the TLS method with noisy data has been significantly broadened.

Adaptive Inverse Modelling of Noisy System by Total Least Squares (완전최소자승법을 이용한 잡음환경하에서 시스템의 적응 역 모델링)

  • 황재섭
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.23-27
    • /
    • 1991
  • RLS(Recursive Least Squares)나 LMS(Least mean square)등은 알고리듬 고유의 성질상 잡음이 섞인 시스템에 있어서는 올바른 역 모델링을 할 수 없다. 따라서, 잡음의 영향을 받지않는 견실한(robust) 모델 추정 알고리듬이 필요하다. 본 논문에서는 잡음환경하에 있는 시스템을역 모델링하는데 있어서, 잡음의 영향을 줄이기위해 완전최소자승법을 도입하고 기존의 최소자승법과 비교 실험하였다. 그리고, 이 방법의 적응 알고리듬을 제안하였으며, RLS(Recursive least squares)와 그 성능을 비교하여 타당성을 검토하였다.

  • PDF

Effects of Edge Detection on Least-squares Model-image Fitting Algorithm

  • Wang, Sendo;Tseng, Yi-Hsing;Liou, Yan-Shiou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Fitting the projected wire-frame model to the detected edge pixels on images by using least-squares approach, called Least-squares Model-image Fitting (LSMIF), is the key of the Model-based Building Extraction (MBBE). It is implemented by iteratively adjusting the model parameters to minimize the squares sum of distances from the extracted edge pixels to the projected wire-frame. This paper describes a series of experiments and studies on various factors affect the fitting results, including the edge detectors, the weighting rules, the initial value of parameters, and the number of overlapped images. The experimental result is not only helpful to clarify the influences of each factor, but is also able to enhance the robustness of the LSMIF algorithm.

  • PDF