• Title/Summary/Keyword: least squares

Search Result 2,603, Processing Time 0.025 seconds

WorldView-2 pan-sharpening by minimization of spectral distortion with least squares

  • Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.353-357
    • /
    • 2011
  • Although the intensity-hue-saturation (IHS) method for pan-sharpening has a spectral distortion problem, it is a popular method in the remote sensing community and has been used as a standard procedure in many commercial packages due to its fast computing and easy implementation. Recently, IHS-like approaches have tried to overcome the spectral distortion problem inherited from the IHS method itself and yielded a good result. In this paper, a similar IHS-like method with least squares for WorldView-2 pan-sharpening is presented. In particular, unlike the previous methods with three or four-band multispectral images for pan-sharpening, six bands of WorldView-2 multispectral image located within the range of panchromatic spectral radiance responses are considered in order to reduce the spectral distortion during the merging process. As a result, the new approach provides a satisfactory result, both visually and quantitatively. Furthermore, this shows great value in spectral fidelity of WorldView-2 eight-band multispectral imagery.

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

DEVELOPMENT OF THE HANSEL-SPITTEL CONSTITUTIVE MODEL GAZED FROM A PROBABILISTIC PERSPECTIVE

  • LEE, KYUNGHOON;KIM, JI HOON;KANG, BEOM-SOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.155-165
    • /
    • 2017
  • The Hansel-Spittel constitutive model requires a total of nine parameters for flow stress prediction. Typically, the parameters are estimated by least squares methods for given tensile test measurements from a deterministic perspective. In this research we took a different approach, a probabilistic viewpoint, to see through the development of the Hansel-Spittel constitutive model. This perspective change showed that deterministic least squares methods are closely related to statistical maximum likelihood methods via Gaussian noise assumption. More intriguingly, this perspective shift revealed that the Hansel-Spittel constitutive model may leave out deterministic trends in residuals despite nearly perfect agreement with measurements. With tensile test measurements of AA1070 aluminum alloy, we demonstrated this deficiency of the Hansel-Spittel constitutive model, suggesting room for improvement.

The Identification Of Multiple Outliers

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.201-215
    • /
    • 2000
  • The classical method for regression analysis is the least squares method. However, if the data contain significant outliers, the least squares estimator can be broken down by outliers. To remedy this problem, the robust methods are important complement to the least squares method. Robust methods down weighs or completely ignore the outliers. This is not always best because the outliers can contain some very important information about the population. If they can be detected, the outliers can be further inspected and appropriate action can be taken based on the results. In this paper, I propose a sequential outlier test to identify outliers. It is based on the nonrobust estimate and the robust estimate of scatter of a robust regression residuals and is applied in forward procedure, removing the most extreme data at each step, until the test fails to detect outliers. Unlike other forward procedures, the present one is unaffected by swamping or masking effects because the statistics is based on the robust regression residuals. I show the asymptotic distribution of the test statistics and apply the test to several real data and simulated data for the test to be shown to perform fairly well.

  • PDF

Load Forecasting for Holidays Using a Fuzzy Least Squares Linear Regression Algorithm (퍼지 최소 자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측)

  • Song Kyung-Bin;Ku Bon-Suk;Baek Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.233-237
    • /
    • 2003
  • An accurate load forecasting is essential for economics and stability power system operation. Due to high relationship between the electric power load and the electric power price, the participants of the competitive power market are very interested in load forecasting. The percentage errors of load forecasting for holidays is relatively large. In order to improve the accuarcy of load forecasting for holidays, this paper proposed load forecasting method for holidays using a fuzzy least squares linear regression algorithm. The proposed algorithm is tested for load forecasting for holidays in 1996, 1997, and 2000. The test results show that the proposed algorithm is better than the algorithm using fuzzy linear regression.

Initial Rotor Position Estimation of an IPMSM Based on Least Squares Approximation with a Polarity Identification (극성 판별이 가능한 최소 제곱법 기반의 IPMSM 회전자 초기 위치 추정)

  • Kim, Keon Young;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.72-75
    • /
    • 2018
  • An initial rotor position estimation method is proposed in this study for an interior permanent-magnet synchronous motor without a resolver or an absolute encoder. This method uses least squares approximation to estimate the initial rotor position. The magnetic polarity is identified by injection of short pulses. The proposed estimation process is robust because it does not require complex signal processing that depends on the performance of a digital filter. In addition, it can be applied to various servo systems because it does not require additional hardware. Experimental results validate the effectiveness of the proposed method using a standard industrial servomotor with interior-permanent magnets.

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas;Bucher, Christian
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model

  • Ye, Minquan;Sun, Jingyi;Huang, Shenhai
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.559-565
    • /
    • 2019
  • In order to alleviate the environmental pressure caused by production process of thermal power plants, the application of cleaner production is imperative. To estimate the implementation effects of cleaner production in thermal plants and optimize the strategy duly, it is of great significance to take a comprehensive evaluation for sustainable development. In this paper, a hybrid model that integrated the analytic hierarchy process (AHP) with least squares support vector machine (LSSVM) algorithm optimized by grid search (GS) algorithm is proposed. Based on the establishment of the evaluation index system, AHP is employed to pre-process the data and GS is introduced to optimize the parameters in LSSVM, which can avoid the randomness and inaccuracy of parameters' setting. The results demonstrate that the combined model is able to be employed in the comprehensive evaluation of the cleaner production in the thermal power plants.

Sensitivity Analysis of Least Squares Velocity Estimation Using a Regular Polygonal Array of Optical Mice (정다각형 배열 광마우스를 이용한 최소 자승 속도 추정법에 대한 민감도 분석)

  • Kim, Sung-Bok;Jeong, Il-Hwa;Lee, Sang-Hyup
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.145-146
    • /
    • 2007
  • This paper presents the sensitivity analysis of the leasst qsuares velocity estimation of an omnidirectional mobile robot using a regular polygonal array of optical mice. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Then, for a given set of optical mouse readings, the least squares velocity estimation of a mobile robot is obtained as the simple average. Finally, the sensitivity analysis of the proposed least squares velocity estimation to imprecise installation is made.

  • PDF