• Title/Summary/Keyword: least square means

Search Result 196, Processing Time 0.027 seconds

Design of Fuzzy Models with the Aid of an Improved Differential Evolution (개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계)

  • Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Design and Analysis of TSK Fuzzy Inference System using Clustering Method (클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석)

  • Oh, Sung-Kwun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.132-136
    • /
    • 2014
  • We introduce a new architecture of TSK-based fuzzy inference system. The proposed model used fuzzy c-means clustering method(FCM) for efficient disposal of data. The premise part of fuzzy rules don't assume any membership function such as triangular, gaussian, ellipsoidal because we construct the premise part of fuzzy rules using FCM. As a result, we can reduce to architecture of model. In this paper, we are able to use four types of polynomials as consequence part of fuzzy rules such as simplified, linear, quadratic, modified quadratic. Weighed Least Square Estimator are used to estimates the coefficients of polynomial. The proposed model is evaluated with the use of Boston housing data called Machine Learning dataset.

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (Subtractive Clustering 알고리즘을 이용한 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.239-240
    • /
    • 2008
  • 본 논문에서는 Subtractive clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network (FRBFNN)의 규칙 수를 자동적으로 생성하는 방법을 제시한다. FRBFNN은 멤버쉽 함수로써 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 Fuzzy C-Means clustering 알고리즘에서 사용하는 거리에 기한 멤버쉽 함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정하는 구조이다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 하는 Subtractive clustering 알고리즘을 사용하여 퍼지 규칙의 수와 같은 의미를 갖는 분할할 입력공간의 수와 분할된 입력공간의 중심값을 동정하며, Least Square Estimator (LSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정 한다.

  • PDF

Phenotypic and genetic parameters of productive traits in Rahmani and Romanov sheep and crossbreds

  • Khattab, Adel S.;Peters, Sunday O.;Adenaike, Adeyemi S.;Sallam, Abdel Aziz M.;Atya, Mahasan M.;Ahmed, Heba A
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1211-1222
    • /
    • 2021
  • Data of 651 lambs (68 Romanov, 49 Rahmani, 151 [♀1/2 Rahmani × ♂1/2 Romanov) and 383 (♀3/4 Rahmani and 1/4♂ Romanov]) were collected from Mehalet Mousa Farm, belonging to Animal Production Research Institute from the period of 2009 to 2016 to estimate phenotypic and genetic parameters. The traits studied were birth weight (BW), body weight at four week (BW4), body weight at eight weeks (BW8) and body weight at twelve weeks (BW12) or weaning weight. Least squares analysis of variance shows significance of the effects of breed groups, gender of lambs, birth type; month of birth and year of birth on all traits studied. Rahmani lambs had heavier BW, BW4, BW8 and BW12 while Romanov lambs had the lowest ones. The first generation (♀1/2 Rhamani × ♂1/2 Romanov) had heavier body weights than Romanov and the second generation (♀3/4 Rahmani × ♂1/4 Roamnov). Gender of lambs had highly significant effect on body weights. Males were significantly (p < 0.01) heavier than females for all traits studied. Least square means of BW, BW4, BW8 and BW12 for single lambs were 2.69, 10.43, 13.53 and 16.10 kg, respectively. Least square means of BW, BW4, BW8 and BW12 for twin lambs were 2.50, 9.37, 12.5 and 15.16 kg, respectively, while least square means of BW, BW4, BW8 and BW12 for triple lambs were 2.09, 7.86, 10.83 and 13.67 kg, respectively. Estimates of direct heritability measured by single trait animal model were 0.14, 0.23, 0.25 and 0.26 for BW, BW4, BW8 and BW12, respectively, and the corresponding measured by multi trait animal model were 0.17, 0.24, 0.32 and 0.36 for the same traits, respectively. All genetic and phenotypic correlations among different traits studied are positive and significant.

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Prediction of Detent Force on Linear Synchronous Motor by means of Moving Least Square Method (이동최소자승법을 이용한 선형동기전동기의 디텐트력 특성 예측)

  • Kim, Young-Kyoun;Kim, Sung-Il;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.994-996
    • /
    • 2003
  • The Response Surface Methodology is frequently used for building an approximation model. However, its approximation errors often occur in engineering problem, because of the use of the Least Square Method. Therefore, this paper introduces the Moving Least Square Method to obtain the more accurate Response Surface Model, and then the detent force of a Permanent Magnet Linear Synchronous Motor is applied to verify the accuracy of the introduced method.

  • PDF

Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation (다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법)

  • Daihyun Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2024
  • This paper presents a method to overcome the problem of increasing elevation estimation error when estimating elevation in a multipath situation with radar. A multipath situation means that radar reception signals reflected from the same target come from multiple paths. In non-multipath, the monopulse method is accurate. For the opposite case, the least square error method is accurate. In multipath situation and when the elevation angle is very low, a singular occurs where the least square error estimate diverges. This singular was identified based on the propagation factor, and monopulse and least square error estimation methods were selectively used. As a result, we succeeded in increasing the accuracy of elevation estimation. MATLAB simulations were performed to verify the method proposed in this paper.

Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter (적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.