• Title/Summary/Keyword: least depth

Search Result 458, Processing Time 0.036 seconds

Research on the Effect of the Control Methods of Irrigation Water on the Growth and Yield of Paddy Rice. (한발기에 있어서 용수관리 방법이 수도생육과 그 수량에 미치는 영향에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2177-2190
    • /
    • 1971
  • This experiment was made to determienthe effect of various soil moisture contents in simulated drought conditions on different stages of rice growth. The drought conditions were developed at such three rice-growing stages as transplanting, immediately after transplanting and young ear forming. Three different lengths of drought periods, which are ten days, twenty days and thirty days, were applied for each growing stage of rice. The rice variety used this experiment is Nong-rim 29. This experiment was conducted at the university farm of the Kon-Kuk University during the period of $1968{\sim}1970$. Three reprications for each of 12 treatments and split plot design were employed in this study. Bottomless wood square boxes, $1^m{\times}1^m{\times}1^m$, were burried in the test plot and box top was covered with poloyethylene sheets to avoid natural rainfall drops. Standard plots were irrigated continuously with a water depth of 40mm/day and those of drought treatments were irrigated continuously up to the beginning of the planned drought period, and they were irrigated again with a depth of 40mm/day up to the maturing stage of rice. Other methods for rice raising followed those methods developed by the Field Crops Experiment Station of the Office of Rural Development. During this experiments, climatic conditions in regard to rainfalls, sunshine hours, and temperatures were observed. According to this observation, those values measured deviate slightly from the annual means. However the growing condition of rice plants were normal. The pH value of irritation water is nearly neutral, and soils in the test plots are relatively fertile, being similar to ordinary paddy soils. Analysis of variances for number of stalks, plan-height, ear sprouting date, length of stalks, ear length, number of ears per plant, fertility, grain weitght, weight of plant, and yield were carried out. The variances for plant height, ear sprouting date, length of stalk ear length, and yield has statistical significance under drought treatments applied at three different growing stages. The variance showing the effect of lengths of drought period is highly significant for all the treatments studied except that of grain weight. The interaction between drought periods and drought treatments at different growing stages is significant for plant height, stalk length, ear length, number of ears, fertility and yield, these results indicated that droughts at different growing stages have influence on plant height, ear length, yield, and length of drought period also has strong influence on all factors studied except grain weight. The combination of drought treatments at different rice growing stages and lengths of drought periods has different effects on various agronomic characteristics, including yield. Plant height under drought treatment practiced at transplanting stage is the lowest, and drought treatment applied immediately after transplanting resulted in the least number of stalks. The effect of different lengths of drought periods on plant height and number of stalks depends signis ficantly on increasing days of drought. Ear sprouting date tends to be delayed for one or two days undedrought treatments at transplanting period and with increasing days of drought. Better yield is secured in drought treatment applied immediately after transplanting. Adverse effect war observed when drought treatment was applied at ear forming period. These effects may be attributed to the alternation of irrigation and drought causing vigorous root activity. In general, yield linearly decreases as the length of the drought period increases. The results obtained in this study demonstrate that, in order to mimimize damage due to drought, and, to save irrigation water, paddy fields, immediately after transplanting, may be not irrigated, since there is sufficient moisture in the soil, and that sufficient irrigation water should be applied again in the ear forming stage of rice plant.

  • PDF

HARDNESS OF COMPOSITE RESIN CURED BY HIGH INTENSITY HALOGEN LIGHT (고강도 할로겐광으로 중합한 복합레진 수복재의 경도)

  • Park, Jong-Seok;Lee, Kwang-Hee;Kim, Dae-Eup;Kim, Seong-Hyeong;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.471-479
    • /
    • 2001
  • The purpose of this study was to compare the effect of the high intensity halogen light $(850\sim1000mW/cm^2)$ with that of the conventional halogen light $(400mW/cm^2)$ on the hardness of composite resin. Three resin composites (Z-100, 3M, U.S.A. : Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, U.S.A.) were filed in the stainless steel moulds which were 4mm in diameter and 2, 3, 4, and 5mm in depth, respectively. They were cured under the four different modes : (1) conventional mode, 40 seconds at $400mW/cm^2$; (2) 'ramp' mode, 10 seconds at 100 to $1000mW/cm^2$ plus 10 seconds at $1000mW/cm^2$; (3) 'boost' mode, 10 seconds at $1000mW/cm^2$; and (4) 'standard' mode, 20 seconds at $850mW/cm^2$. The surface hardnesses of the top and the bottom of the resin samples were measured with a microhardness tester (MXT70, Matsuzawa, Japan). The top surface hardness was not significantly different among the curing modes. The bottom surface hardness was generally the highest in the conventional mode and the lowest in the high intensity boost mode. There was no significant difference in the bottom surface hardness between the conventional mode and the high intensity standard mode in 2mm depth. The results suggest that the curing time of the high intensity halogen light $(850mW/cm^2)$ should be at least 20 seconds to produce the equal level of the bottom surface hardness of 2mm resin composite as compared to the hardness produced by the conventional halogen light $(400mW/cm^2)$.

  • PDF

SEDATION EVALUATION USING BIS INDEX ASSESSMENT WITH AND WITHOUT THE ADDED SUBMUCOSAL MIDAZOLAM (점막하 Midazolam의 병용투여 시 BIS 분석을 이용한 진정 평가)

  • Lee, Young-Eun;Park, Mi-Kyung;Kim, So-Young;Kim, Yun-Hee;Jung, Sang-Hyuk;Baek, Kwang-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • The aim of this study was to examine the difference of the depth of sedation using the Bispectral index assessment with and without the added submucosal Midazolam to oral Chloral hydrate and Hydroxyzine for pediatric patients. Twenty seven sedation cases were performed in this study Selection criteria included good health(ASA I), 2 to 6 years of age, the need for sedation to receive dental treatment including anesthesia, and restorative procedure over at least two teeth. Patients were randomly classified into one group taking oral Chloral hydrate(60 mg/kg) and Hydroxyzine(1 mg/kg) and the other group recieving Chloral hydrate(60 mg/kg), Hydroxyzine(1 mg/kg) and submucosal Midazolam(0.1 mg/kg). Nitrous Oxide(50%) was used for both group during sedation. Patients were monitored using a pulse oximeter and a Bispectral monitor. A behavior scale was rated as quiet(Q), crying(C), movement(M), or struggling(S) every 2 minutes watching a recorded videotape. Analysis showed a significant difference in mean Bispectral index and SD during sedation across two groups(P<0.001). The group of patients injected with submucosal Midazolam in addition to oral Chloral hydrate and Hydroxyzine showed a lower mean Bispectral index and a narrower SD. PR and SpO2 for both groups remained within the normal values. Submucosal Midazolam improved the sedation quality by deepening sedation depth without compromising safety and enabled the sedation pattern to be kept more stable.

  • PDF

Caregivers' adherence factors affecting maintenance treatment in children with well-controlled asthma : A qualitative analysis through in-depth interview (천식 조절 상태 환아의 유지 치료에 대한 보호자 순응 요인: 심층 면담을 통한 질적 분석)

  • Choi, Ic Sun;Cho, Saeng Koo;La, Kyong Suk;Byeon, Jung Hye;Song, Dae Jin;Yoo, Young;Choung, Ji Tae
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.364-372
    • /
    • 2010
  • Purpose : Good adherence of caregivers is essential for successful health outcomes in the treatment of childhood asthma. The purpose of this study was to identify the factors contributing to good adherence of maintenance treatment in children with well-controlled asthma. Methods : Children with well-controlled asthma being treated with a daily controller for at least 3 months in Korea University Anam Hospital were selected. Their caregivers who had good adherence to maintenance treatment were recruited. Qualitative study through in-depth interviews was conducted with 18 caregivers who agreed to the study. Results : The 18 caregivers (mean age, 40.0 years) consisted of 15 mothers, 2 grandmothers, and 1 father. The resulting consensus were identified and grouped into 2 domains: the caregiver/patient aspect with 8 theme factors and the treatment aspect with 4 theme factors. The main theme factors in the caregiver/patient aspect were enabling participation in physical activities and exercise (77.8%), perceptions regarding asthma and the need for long-term treatment (50.0%), and perceived value of the medications outweighing the risk of side effects (38.9%). The main theme factors in the treatment aspect were trust in the physician (77.8%), general satisfaction with the manner and attitude of the physician (77.8%) and verification of the necessity of further treatment by performing tests (38.9%). Conclusion : Efforts to improve caregivers' adherence to the treatment of childhood asthma must include a range of factors related to both caregiver/patient aspects and treatment aspects. Among all of these factors, it may be most important to establish a physician-caregiver partnership.

Morphogenetic Environment of Jilmoe Bog in the Odae Mountain National Park (오대산국립공원 내 "질뫼늪"의 지형생성환경)

  • Son, Myoung-Won;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • The wetland is very important ecologically as a habitat of diverse organisms. The purpose of this paper is to elucidate the morphogenetic environment of Jilmoe Bog found in the Odae Mountain National Park Jilmoe Bog is located in the high etchplain(1,060m) where Daebo Granite which had intruded in Jura epoch of Mesozoic era has weathered deeply and has uplifted in the Tertiary. The annual mean temperature of study area is $5.3^{\circ}C$, the annual precipitation is 2,888mm. The minimun temperature of the coldest month(january) is below $-30^{\circ}C$ and the depth of frozen soil is over 1.6m. Jilmoe bog consists of a large bog and a small bog. The length of the large bog is 63m and its width is 42m. The basal surface of Jilmoe bog is uneven. Jilmoe bog is a string bog fanned due to frost actions. In String bog, its surface is wavy with stepped dry hills and net-like troughs crossing hill slope. It seems that string bog is related to the permofrost or seasonal permofrost of cold conifer forest(taiga) zone(where the depth of frozen soil is very deep in the least in winters). String bog is a kind of thermokarst that frozen soil thaws differentially locally in declining permofrost and ground surface becomes irregular. There is turf-banked terracette of width $30{\sim}40cm$ in the headwall of small cirque-type nivation hollow formed at footslope of Maebong mountain around Jilmoe bog. This turf-banked terracette is formed by the frost growth of soil water below grass mat in periglacial climate environment. Where water is plentiful such as a nivation follow${\sim}$valley corridor and a headwall of valley, turf patterned grounds of width $30{\sim}50cm$ are found. This turf patterned ground is 'unclassified patterned ground', earth hummock. In conclusion, Jilmoe bog is a string bog of thermokarst that the relief of ground surface is irregular according to locally differentially thawing of permofrost(frozen soil). Jilmoe bog is high moor, its surroundings belongs to periglacial environment that turf-banked terracette and turf patterned ground are fanned actively.

  • PDF

Clinical effects of additional use of erythritol powder air polishing device on non-surgical periodontal treatment in moderate chronic periodontitis (중등도 만성 치주염 환자에서 erythritol 공기분말 연마기구를 부가적으로 이용하는 비외과적 치주치료의 임상적 효과)

  • Lee, Mun-Young;Park, Eon-Jeong;Kwon, Eun-Young;Kim, Hyun-Joo;Lee, Ju-Youn;Joo, Ji-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the clinical effects of erythritol powder air polishing device (EPAP) in addition to scaling and root planing (SRP) in non-surgical periodontal treatment in moderate chronic periodontitis patients. Materials and Methods: Clinical evaluation was performed at 21 sites treated with SRP (control) and 21 sites treated with the addition of SRP+EPAP (test). All examinations were performed before treatment, 1 month after treatment, and 3 months after treatment. Depth of the periodontal pocket, gingival recession, clinical attachment level, plaque index, and bleeding of probing were measured as clinical parameters. Results: In both test and control groups, there was a significant decrease in the depth of the periodontal pocket, plaque index, bleeding of probing, increased gingival recession, and gain of clinical attachment level at 1 month and 3 months after treatment. However, there was no significant clinical difference between the test group and the control group. Clinical result was improved after 1 month compared to the baseline; in contrast, results at 3 months after treatment were worse than at 1 month after treatment. Conclusion: In this study, we cannot suggest that SRP + EPAP is clinically more effective than SRP alone as non-surgical periodontal treatments. Periodic periodontal therapy, at intervals of at least every three months, is important for sustaining effects of this treatment.

Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea (동중국해와 기니만에서 저염분수로 인한 표층음파채널과 중주파수 음향 특성 분석)

  • Kim, Hansoo;Kim, Juho;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Salinity affects sound speed in the low salinity environment, in the seas where freshwater from large rivers and flows into the marginal sea area near the Yangtze River and the Niger River. In this paper, SSC (Surface Sound Channel) formed by low salinity water was investigated in the East China Sea and the Gulf of Guinea of rainy season. The data from KODC (Korea Oceanographic Data Center) in the East China Sea and from ARGO (Array for Real-time Geostrophic Oceanography) in the Gulf of Guinea of the tropical area were used for analysis. SSC haline channel was formed 14 times among 32 SSC occurrences when the 90 data from 9 points were analyzed during a decade (2000 ~ 2009) in the East China Sea. In the Gulf of Guinea, haline channel was formed 18 times among 20 SSC occurrences during 3 years (2006 ~ 2009). When the sound speed gradient was analyzed from temperature-salinity gradient diagram, the gradients of both salinity and temperature affect SSC formation in the East China Sea. In contrast, the salinity gradient mostly affects SSC formation due to the least change of temperature in the well-developed mixed layer in the Gulf of Guinea. Their acoustic characteristics show that channel depth is 6.5 m, critical angle is $1.5^{\circ}$ and difference of transmission loss between surface and thermocline is 11.5 dB in the East China Sea, while channel depth is 18 ~ 24 m, critical angle is $4.0{\sim}5.4^{\circ}$ and difference of transmission loss is 21.5 ~ 27.9 dB in the Gulf of Guinea. These results are expected to be used as a basic understanding of the acoustic transmission changes due to low salinity water at the estuaries and the ocean with heavy precipitation.

Effect of Starvation on Some Parameters in Rhynchocypris oxycephalus (Sauvage and Dabry): A Review (버들치, Rhynchocypris oxycephalus (Sauvage and Dabry) 기아시 일부형질에서의 효과: 개관)

  • Park In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.351-368
    • /
    • 2004
  • Following the previous experiments, a starvation experiment was conducted to determine the influence of feeding and starvation on the histological and biochemical changes, the morphormetric changes in the sectioned body and the morphometric changes in Rhynchocypris oxycephalus (Sauvage and Dabry). The influence of starvation on nutritional conditions of the histological changes of hepatocyte and intestinal epithelium as hepatosmatic index (HSI), protein, RNA and DNA concentrations of liver in R. oxycephalus was tested. Although the starved group showed higher concentrations of protein, DNA and RNA than the fed group, food deprivation resulted in a decrease in the HSI, hepatocyte nucleus size and nuclear height of the intestinal epithelium. The RNA - DNA ratio appears to be a useful index of nutritional status in R. oxycephalus and may be useful for determining if R. oxycephalus is in a period of rapid or slow growth at the time of sampling. Additionally, the data have been interpreted in detail and some biologically important relationships discussed. The effects of starvation on the morphometrical changes in sectioned body traits, condition factor, viscera index and dressing percentage were determined for evaluating nutritional conditions of R. oxycephalus. Starvation for nine weeks resulted in a decrease in most sectioned traits as well as in condition factor and viscera index (P<0.05). These findings suggest that nutritional parameters used in this study appear to be a useful index for nutritional status in this species. The data has been interpreted in detail and some important body sectioned values of interest to commercial growers discussed. A 75-day study was conducted to determine the effect of starvation on classical and truss parameters in R. oxycephalus. Truss dimensions of almost the entire head and trunk region as well as the abdomen were increased significantly through feeding or starvation (P<0.05). Truss dimensions of the caudal region generally decreased through feeding or starvation, particularly those dimensions at the hind part of the trunk. There were some significant decreases in classical dimensions of the head region during feeding, in relation to body depth characteristics in the trunk and caudal region during starvation, whereas there was only one decreasing classical dimension in the caudal region during feeding. The results of this study indicate that application of the truss network as a character set enforces classical coverage across the body form, discrimination among experimental groups thus being enhanced. Considering that the dimension of the lower part of the head and some truss and classical dimensions were least affected by feeding and starvation, these dimensions may then be useful as a taxonomical indicator to discriminate the species of Rhynchocypris sp. The value of trunk region dimensions with a large component of body depth in R. oxycephalus is most likely to be compromised by variability related to differences in feeding regimes of fish in different habitats.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim - (여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.73-85
    • /
    • 2015
  • This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.