The main purpose of this study was to examine the effects of meta-cognition, learning flow and problem solving ability of the college engineering students on academic achievement. For this purpose, a total of 396 college engineering freshmen of the six different departments was chosen to conduct a survey. A hypothetical model was proposed, which was composed of meta-cognition, problem solving ability and learning flow as the prediction variables, and academic achievement as the outcome variables. The results of this study through multiple regression analysis showed that meta-cognition, learning flow and problem solving ability significantly influenced on the college engineering studnets' academic achievement. In addition, learning flow was used as a significant mediated variable in the relationships among meta-cognition, problem solving ability and academic achievement. Based on these study results, the above variables investigated in this study should be considered in the design and development of the college engineering courses that enable students to facilitate their problem-solving attitude and improve academic achievement.
The purpose of this study was to confirm the degree of other behaviors among university students in the department of radiology(science) who experienced online classes in the COVID-19 situation and to investigate the effect of self-directed learning ability, flow and academic achievement on other behaviors. The research method was descriptive research. Data were 200 students collected from June 1 to 30 in 2022 using structured questionnaires as students in the Department of Radiology(science). Collected data were analyzed using descriptive statistics, t-test, ANOVA, Cronbach's pearson's correlation, multiple regression analysis with SPSS/WIN 21.0. The result of the study showed that the other behaviors were in the order of 'having s different thought, and 'sending text messages'. other behaviors was 1.75, self-directed learning ability was 3.60, flow was 3.23 and academic achievement was 4.29. There was a significant negative correlation between other behaviors and self-directed learning ability, flow, academic achievement. Factors influencing other behaviors were academic achievement, age, flow, self-directed learning ability in that order. As a result of the above research. it is expected that specific measures and various teaching methods to be flowed in the class are need as the way to lower the other behaviors of university students in the Department of Radiology(science) is to increase academic achievement.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.271-279
/
2023
The purpose of this study was to investigate the effect of learning flow, problem solving ability, professor-student interaction of academic achievement in nursing students. Data were collected from 274 nursing students in B city and analyzed by t-test, ANOVA, Pearson correlation coefficient, and hierarchial multiple regression using SPSS/WIN 22.0. The degree of academic achievement in nursing students was 3.70±0.70. There were significant differences in academic achievement with grade(F=4.755, p=.003), campus life satisfaction(F=5.643, p=.004), major satisfaction(t=5.794, p=.003), adapting to COVID-19(F=7.961, p<.001), satisfaction to non-face-to-face environment class(F=18.353, p<.001). There was positive correlation between academic achievement and learning flow(r=.649, p<.001), problem solving ability(r=.333, p<.001), professor-student interaction(r=.479, p<.001). The factors affecting academic achievement of the study subjects were learning flow(β=.563, p<.001), professor-student interaction(β=.280, p<.001), with an explanatory power of 52.0%. Therefore, strategies increase the academic achievement of nursing students in untact lecture, and environment improvement to increase learning flow and professor-student interaction are needed.
Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.237-245
/
2022
The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.3
/
pp.201-207
/
2021
Deep learning, a type of machine learning, performs learning while changing the weights as it progresses through each learning process. Tensor Flow and Keras provide the results of the end of the learning in graph form. Thus, If an error occurs, the result must be discarded. Consequently, existing technologies provide a function to roll back learning results, but the rollback function is limited to results up to five times. Moreover, they applied the concept of MLOps to track the deep learning process, but no rollback capability is provided. In this paper, we construct a system that manages the intermediate value of the learning process by blockchain to record the intermediate learning process and can rollback in the event of an error. To perform the functions of blockchain, the deep learning process and the rollback of learning results are designed to work by writing Smart Contracts. Performance evaluation shows that, when evaluating the rollback function of the existing deep learning method, the proposed method has a 100% recovery rate, compared to the existing technique, which reduces the recovery rate after 6 times, down to 10% when 50 times. In addition, when using Smart Contract in Ethereum blockchain, it is confirmed that 1.57 million won is continuously consumed per block creation.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.7
/
pp.423-430
/
2017
This study examined the effects of role rotation experience on learning flow, self leadership and debriefing satisfaction in nursing students. A non-equivalence control group quasi-experimental study was used and included as participants 203 junior nursing students at Y University. The experimental group (n=103) participated in the teaching class using a role rotation experience, while the control group (n=100) received conventional practice education. The outcome measurements were learning flow, self leadership, and debriefing satisfaction. The collected data were analyzed using a chi-test, and at-test using the SPSS WIN 21.0 program. The total score of learning flow and self leadership were similar in the two groups. On the other hand, in the case of the debriefing satisfaction (t=-2.70, p=.008), the experimental group ($4.24{\pm}0.51$) was remarkably higher than the control group ($4.03{\pm}0.60$). Although the changes regarding the learning flow and self leadership could not be identified, the debriefing satisfaction had been affected by the practice education using the role rotation experience. Therefore, to identify the effects of simulation education for further details, more research with diversified subjects and varied durations is needed.
The purpose of this study was to examine the effect of GI-STEAM program on leadership, creative personality, and learning flow of elementary Gifted Students. GI-STEAM program was the convergence model of Group Investigation that belongs to Co-learning and STEAM framework of learning criterion. The participants were 16 gifted students in a Korean elementary school located in Gyeong-gi province. The experimental design was one group pretest-posttest design. After a pretest on leadership, creative personality, and learning flow was conducted, classes were carried out as GI-STEAM program for the gifted student and a post-test was conducted. The study results of the class that was conducted twelve times for two weeks are as follows. First, Individual area of leadership is meaningfully developed in statistics after GI-STEAM program. The sub-domains of leadership, such as the communication, organization management, society commitment and teamwork showed a statistically significant improvement. Second, the domain of creative personality didn't show meaningful difference after GI-STEAM program. However, the aesthetic in the sub-domains of the creative personality showed a statistically significant improvement. Third, learning flow was meaningfully developed in statistics after GI-STEAM program. The sub-domains of the leadership, such as the balance between challenge and ability, integration with behavior and consciousness, concrete feedback and Autotelic experience showed a statistically significant improvement. In conclusion, GI-STEAM is an effective program for improving ability of communication, aesthetic sensibility, which are core competency of 'creative-convergence' gifted students. For this reason, it is highly considered that various programs applying GI-STEAM should be developed.
Journal of Korean Library and Information Science Society
/
v.46
no.3
/
pp.119-140
/
2015
The domestic and foreign standards of school libraries suggest that school library should be run to give useful and pleasant experiences to students. This study applies Csikszentmihalyi's 'flow theory' to analyze the relationships between students' flow experience and their satisfaction about school libraries use. The variables selected in this study are students' satisfaction, flow experience, library skill, challenge of library use, types of library use and students' learning styles. The research model is designed by using these 6 variables in this study. The data are collected from 293 students and analyzed by structural equation modeling. The results of this study are as follows: The entire casual relationships show that library skills influence in types of library use, types of library use affect students' learning styles and students' learning styles influence in satisfaction through flow. To improve students' satisfaction about school library use, this study proposes effective ways related to teacher librarians' role performances to expand students' flow experience and increase their library skills.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.119-130
/
2022
Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.
Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.58-64
/
2021
As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.