• Title/Summary/Keyword: learning trajectory

Search Result 252, Processing Time 0.03 seconds

Unsupervised Motion Learning for Abnormal Behavior Detection in Visual Surveillance (영상감시시스템에서 움직임의 비교사학습을 통한 비정상행동탐지)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.45-51
    • /
    • 2011
  • In this paper, we propose an unsupervised learning method for modeling motion trajectory patterns effectively. In our approach, observations of an object on a trajectory are treated as words in a document for latent dirichlet allocation algorithm which is used for clustering words on the topic in natural language process. This allows clustering topics (e.g. go straight, turn left, turn right) effectively in complex scenes, such as crossroads. After this procedure, we learn patterns of word sequences in each cluster using Baum-Welch algorithm used to find the unknown parameters in a hidden markov model. Evaluation of abnormality can be done using forward algorithm by comparing learned sequence and input sequence. Results of experiments show that modeling of semantic region is robust against noise in various scene.

A Study on Trajectory Control of PUMA Robot using Chaotic Neural Networks and PD Controller (카오틱 신경망과 PD제어기를 이용한 푸마 로봇의 궤적제어에 관한 연구)

  • Jang, Chang-Hwa;Kim, Sang-Hui;An, Hui-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.5
    • /
    • pp.46-55
    • /
    • 2000
  • This paper presents a direct adaptive control of robot system using chaotic neural networks and PD controller. The chaotic neural networks have robust nonlinear dynamic characteristics because of the sufficient nonlinearity in neuron itself, and the additional self-feedback and inter-connecting weights between neurons in same layer. Since the structure and the learning method are not appropriate for applying in control system, this neural networks have not been applied. In this paper, a modified chaotic neural networks is presented for dynamic control system. To evaluate the performance of the proposed neural networks, these networks are applied to the trajectory control of the three-axis PUMA robot. The structure of controller consists of PD controller and chaotic neural networks in parallel for conforming the stability in initial learning phase. Therefore, the chaotic neural network controller acts as a compensating controller of PD controller.

  • PDF

Personalized Data Restoration Algorithm to Improve Wearable Device Service (웨어러블 디바이스 서비스 향상을 위한 개인 맞춤형 데이터 복원 알고리즘)

  • Kikun Park;Hye-Rim Bae
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • The market size of wearable devices is growing rapidly every year, and manufacturers around the world are introducing products that utilize their unique characteristics to keep up with the demand. Among them, smart watches are wearable devices with a very high share in sales, and they provide a variety of services to users by using information collected in real-time. The quality of service depends on the accuracy of the data collected by the smart watch, but data measurement may not be possible depending on the situation. This paper introduces a method to restore data that a smart watch could not collect. It deals with the similarity calculation method of trajectory information measured over time for data restoration and introduces a procedure for restoring missing sections according to the similarity. To prove the performance of the proposed methodology, a comparative experiment with a machine learning algorithm was conducted. Finally, the expected effects of this study and future research directions are discussed.

Extended Direct Learning Control for Single-input Single-output Nonlinear Systems (단일 입출력 비선형 시스템에 대한 확장된 직접학습제어)

  • Park, Joong-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, an extended type of a direct learning control(DLC) method is proposed for the effective control of systems which perform a given task repetitively. DLC methods have been suggested to overcome the defects of iterative learning control, the learning process should be resumed from the beginning even if a slight change occurs in the desired output pattern. If a given desired output trajectory is "proportional" to the output trajectories which are learned previously, we can obtain the desired control input directly without the iterative learning process by using the DLC. First, most existing DLC methods are shown to be applicable only to single-input single-output systems with the relative degree one and then, an extended type of DLC is proposed for a class of nonlinear systems having the relative degree more than or equal to one by using the known relative degree of a nonlinear system. By the simulation results for the arbitrary nonlinear system with the relative degree more than one, the validity and the performance of the proposed DLC method are examined.

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Motion Generation of a Single Rigid Body Character Using Deep Reinforcement Learning (심층 강화 학습을 활용한 단일 강체 캐릭터의 모션 생성)

  • Ahn, Jewon;Gu, Taehong;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.13-23
    • /
    • 2021
  • In this paper, we proposed a framework that generates the trajectory of a single rigid body based on its COM configuration and contact pose. Because we use a smaller input dimension than when we use a full body state, we can improve the learning time for reinforcement learning. Even with a 68% reduction in learning time (approximately two hours), the character trained by our network is more robust to external perturbations tolerating an external force of 1500 N which is about 7.5 times larger than the maximum magnitude from a previous approach. For this framework, we use centroidal dynamics to calculate the next configuration of the COM, and use reinforcement learning for obtaining a policy that gives us parameters for controlling the contact positions and forces.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

Experimental study on human arm motions in positioning

  • Shibata, S.;Ohba, K.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, characteristics of the motions of a human arm are investigated experimentally. When the conditions of the target point are restricted, human adjusts its trajectory and velocity pattern of the arm to fit the conditions skillfully. The purpose of this work is to examine the characteristics of the trajectory, velocity pattern, and the size of the duration in the following cases. First, we examine the case of point-to-point motion. The results are consistent with the minimum jerk theory. However, individual differences in the length of the duration can be observed in the experiment. Second, we examine the case which requires accuracy of positioning at the target point. It is found that the velocity pattern differs from the bell shaped pattern explained by the minimum jerk theory, and has its peak in the first half of the duration. When higher accuracy of the positioning is required, learning effects can be observed. Finally, to examine the case which requires constraint of the arm posture at the target point, we conduct experiments of a human trying to grasp a cup. It is considered that this motion consists of two steps : one is the positioning motion of the person in order to start the grasping motion, the other is the grasping motion of the human's hand approaching toward the cup and grasping it. In addition, two representative velocity patterns are observed : one is the similar velocity pattern explained in the above experiment, the other is the velocity pattern which has its relative maximum in the latter half of the duration.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF