• Title/Summary/Keyword: learning through the image

Search Result 925, Processing Time 0.025 seconds

Image Enhancement based on Piece-wise Linear Enhancement Curves for Improved Visibility under Sunlight (햇빛 아래에서 향상된 시인성을 위한 Piece-wise Linear Enhancement Curves 기반 영상 개선)

  • Lee, Junmin;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.812-815
    • /
    • 2022
  • Images displayed on a digital devices under the sunlight are generally perceived to be darker than the original images, which leads to a decrease in visibility. For better visibility, global luminance compensation or tone mapping adaptive to ambient lighting is required. However, the existing methods have limitations in chrominance compensation and are difficult to use in real world due to their heavy computational cost. To solve these problems, this paper propose a piece-wise linear curves (PLECs)-based image enhancement method to improve both luminance and chrominance. At this time, PLECs are regressed through deep learning and implemented in the form of a lookup table to real-time operation. Experimental results show that the proposed method has better visibility compared to the original image with low computational cost.

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

Subimage Detection of Window Image Using AdaBoost (AdaBoost를 이용한 윈도우 영상의 하위 영상 검출)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.578-589
    • /
    • 2014
  • Window image is displayed through a monitor screen when we execute the application programs on the computer. This includes webpage, video player and a number of applications. The webpage delivers a variety of information by various types in comparison with other application. Unlike a natural image captured from a camera, the window image like a webpage includes diverse components such as text, logo, icon, subimage and so on. Each component delivers various types of information to users. However, the components with different characteristic need to be divided locally, because text and image are served by various type. In this paper, we divide window images into many sub blocks, and classify each divided region into background, text and subimage. The detected subimages can be applied into 2D-to-3D conversion, image retrieval, image browsing and so forth. There are many subimage classification methods. In this paper, we utilize AdaBoost for verifying that the machine learning-based algorithm can be efficient for subimage detection. In the experiment, we showed that the subimage detection ratio is 93.4 % and false alarm is 13 %.

Human Tracking Technology using Convolutional Neural Network in Visual Surveillance (서베일런스에서 회선 신경망 기술을 이용한 사람 추적 기법)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, we have studied tracking as a training stage of considering the position and the scale of a person given its previous position, scale, as well as next and forward image fraction. Unlike other learning methods, CNN is thereby learning combines both time and spatial features from the image for the two consecutive frames. We introduce multiple path ways in CNN to better fuse local and global information. A creative shift-variant CNN architecture is designed so as to alleviate the drift problem when the distracting objects are similar to the target in cluttered environment. Furthermore, we employ CNNs to estimate the scale through the accurate localization of some key points. These techniques are object-independent so that the proposed method can be applied to track other types of object. The capability of the tracker of handling complex situations is demonstrated in many testing sequences. The accuracy of the SVM classifier using the features learnt by the CNN is equivalent to the accuracy of the CNN. This fact confirms the importance of automatically optimized features. However, the computation time for the classification of a person using the convolutional neural network classifier is less than approximately 1/40 of the SVM computation time, regardless of the type of the used features.

A Study on Field Compost Detection by Using Unmanned AerialVehicle Image and Semantic Segmentation Technique based Deep Learning (무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 연구)

  • Kim, Na-Kyeong;Park, Mi-So;Jeong, Min-Ji;Hwang, Do-Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.367-378
    • /
    • 2021
  • Field compost is a representative non-point pollution source for livestock. If the field compost flows into the water system due to rainfall, nutrients such as phosphorus and nitrogen contained in the field compost can adversely affect the water quality of the river. In this paper, we propose a method for detecting field compost using unmanned aerial vehicle images and deep learning-based semantic segmentation. Based on 39 ortho images acquired in the study area, about 30,000 data were obtained through data augmentation. Then, the accuracy was evaluated by applying the semantic segmentation algorithm developed based on U-net and the filtering technique of Open CV. As a result of the accuracy evaluation, the pixel accuracy was 99.97%, the precision was 83.80%, the recall rate was 60.95%, and the F1-Score was 70.57%. The low recall compared to precision is due to the underestimation of compost pixels when there is a small proportion of compost pixels at the edges of the image. After, It seems that accuracy can be improved by combining additional data sets with additional bands other than the RGB band.

Optimization-based Deep Learning Model to Localize L3 Slice in Whole Body Computerized Tomography Images (컴퓨터 단층촬영 영상에서 3번 요추부 슬라이스 검출을 위한 최적화 기반 딥러닝 모델)

  • Seongwon Chae;Jae-Hyun Jo;Ye-Eun Park;Jin-Hyoung, Jeong;Sung Jin Kim;Ahnryul Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.331-337
    • /
    • 2023
  • In this paper, we propose a deep learning model to detect lumbar 3 (L3) CT images to determine the occurrence and degree of sarcopenia. In addition, we would like to propose an optimization technique that uses oversampling ratio and class weight as design parameters to address the problem of performance degradation due to data imbalance between L3 level and non-L3 level portions of CT data. In order to train and test the model, a total of 150 whole-body CT images of 104 prostate cancer patients and 46 bladder cancer patients who visited Gangneung Asan Medical Center were used. The deep learning model used ResNet50, and the design parameters of the optimization technique were selected as six types of model hyperparameters, data augmentation ratio, and class weight. It was confirmed that the proposed optimization-based L3 level extraction model reduced the median L3 error by about 1.0 slices compared to the control model (a model that optimized only 5 types of hyperparameters). Through the results of this study, accurate L3 slice detection was possible, and additionally, we were able to present the possibility of effectively solving the data imbalance problem through oversampling through data augmentation and class weight adjustment.

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.