• Title/Summary/Keyword: learning support

Search Result 2,914, Processing Time 0.034 seconds

GPT-enabled SNS Sentence writing support system Based on Image Object and Meta Information (이미지 객체 및 메타정보 기반 GPT 활용 SNS 문장 작성 보조 시스템)

  • Dong-Hee Lee;Mikyeong Moon;Bong-Jun, Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • In this study, we propose an SNS sentence writing assistance system that utilizes YOLO and GPT to assist users in writing texts with images, such as SNS. We utilize the YOLO model to extract objects from images inserted during writing, and also extract meta-information such as GPS information and creation time information, and use them as prompt values for GPT. To use the YOLO model, we trained it on form image data, and the mAP score of the model is about 0.25 on average. GPT was trained on 1,000 blog text data with the topic of 'restaurant reviews', and the model trained in this study was used to generate sentences with two types of keywords extracted from the images. A survey was conducted to evaluate the practicality of the generated sentences, and a closed-ended survey was conducted to clearly analyze the survey results. There were three evaluation items for the questionnaire by providing the inserted image and keyword sentences. The results showed that the keywords in the images generated meaningful sentences. Through this study, we found that the accuracy of image-based sentence generation depends on the relationship between image keywords and GPT learning contents.

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

Field Perception Analysis on Policy Outcomes of Academic Libraries (국내 대학도서관 정책 성과에 대한 현장 인식 조사)

  • Jongwook Lee;Woojin Kang;Youngmi Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.415-436
    • /
    • 2023
  • In this study, we aimed to examine the level of implementation of the second comprehensive plan for promoting academic libraries (2019-2023) by analyzing key statistics of academic libraries and gathering perceptions from library staff. We analyzed the changes in major statistical indicators of libraries over the past five years. Additionally, we surveyed library staff to understand their overall perceptions of the plan and their attitudes towards the 17 sub-tasks outlined in it. The analysis of 369 survey responses revealed several key findings. Firstly, most respondents comprehended the plan well and frequently utilized it for developing their libraries' development and implementation plans. Secondly, the IPA results indicated that regardless of the type of university, there should be a continuous focus on facility improvement, teaching-learning support, and expanding access to academic resources. Efforts to develop library policies and strengthen human and financial resources were identified as crucial. Thirdly, four-year universities particularly emphasized the importance of expanding access to international academic resources compared to junior colleges. Conversely, junior colleges perceived foundational skill-building programs and inclusive services as more significant than four-year universities. The application of the IPA diagonal model revealed that the performance levels of all sub-tasks were lower than their perceived importance levels, suggesting the need for strategies to enhance effectiveness in future comprehensive plan formulation.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.273-285
    • /
    • 2024
  • With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.

Parents' Perceptions of Cognitive Rehabilitation for Children With Developmental Disabilities: A Mixed-Method Approach of Phenomenological Methodology and Word Cloud Analysis (발달장애 아동 부모의 인지재활 경험에 대한 질적 연구: 워드 클라우드 분석과 현상학적 연구 방법 혼합설계)

  • Ju, Yu-Mi;Kim, Young-Geun;Lee, Hee-Ryoung;Hong, Seung-Pyo;Han, Dae-Sung
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.49-63
    • /
    • 2024
  • Objective : The purpose of this study was to investigate parental perspectives on cognitive rehabilitation using a combination of phenomenological research methodology and word cloud analysis. Methods : Interviews were conducted with five parents of children with developmental disabilities. Word cloud analysis was conducted using Python, and five researchers analyzed the meaning units and themes using phenomenological methods. Words with high frequency were considered as a heuristic tool. Results : A total of 43 meaning units and nine components related to the phenomenon of cognitive rehabilitation were derived, and three themes were finalized. The main themes encompassed the definition of cognitive rehabilitation, challenges associated with cognitive rehabilitation, and factors influencing the selection of a cognitive rehabilitation institute. Cognitive rehabilitation emerged as a treatment focused on improving learning, daily functioning, and cognitive abilities in children with developmental disabilities. The perceived issues with cognitive rehabilitation pertained to treatment methods, therapist expertise, and associated costs. In addition, parents highlighted the importance of therapist expertise, humane personality, and affordability of cost and schedule when choosing a cognitive rehabilitation institute. Conclusion : Parents expressed expectations for substantial improvements in their children's daily functioning through cognitive rehabilitation. However, challenges were identified in clinical practices. Going forward, we expect that cognitive rehabilitation will evolve into a better therapeutic support service addressing the concerns raised by parents.

Student difficulties in constructed-response mathematics assessments: A case study of writing activities for low-performing first-year high school students (수학 서술형 평가의 어려움과 지도 방안: 고교 1학년 노력형 학생의 쓰기 활동 사례 연구)

  • Mihui Bae;Woong Lim
    • The Mathematical Education
    • /
    • v.63 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study aims to analyze low-performing high school students' difficulties in constructed response (CR) mathematics assessments and explore ways to use writing activities to support student learning. The participants took CR assessments, engaged in guided writing activities across 15 lessons, and provided responses to our interviews. The study identified 20 types of student difficulties, which were sorted into two main categories: "mathematical difficulties" and "CR difficulties." The difficult nature of mathematics as a school subject included a lack of understanding of mathematical concepts, students' difficulty with mathematical symbols and notations, and struggles with word problems. Challenges specific to CR assessments included students' difficulties arising from the testing conditions unlike those of multiple-choice items, and included issues related to constructing appropriate responses and psychological barriers. To address these challenges in CR assessments, the study conducted guided writing activities as an intervention, through which six themes were identified: (1) internalization of mathematical concepts, (2) mathematical thinking through relational understanding, (3) diverse problem-solving methods, (4) use of mathematical symbols, (5) reflective thinking, and (6) strategies to overcome psychological barriers.

Key Factors of Talented Scientists' Growth and ExpeI1ise Development (과학인재의 성장 및 전문성 발달과정에서의 영향 요인에 관한 연구)

  • Oh, Hun-Seok;Choi, Ji-Young;Choi, Yoon-Mi;Kwon, Kwi-Heon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.907-918
    • /
    • 2007
  • This study was conducted to explore key factors of expertise development of talented scientists who achieved outstanding research performance according to the stages of expertise development and dimensions of individual-domain-field. To fulfill the research purpose, 31 domestic scientists who were awarded major prizes in the field of science were interviewed in-depth from March to September, 2007. Stages of expertise development were analyzed in light of Csikszentmihalyi's IDFI (individual-domain-field interaction) model. Self-directed learning, multiple interests and finding strength, academic and liberal home environment, and meaningful encounter were major factors affecting expertise development in the exploration stage. In the beginner stage, independence, basic knowledge on major, and thirst for knowledge at university affected expertise development. Task commitment, finding flow, finding their field of interest and lifelong research topic, and mentor in formal education were the affecting factors in the competent stage. Finally, placing priority, communication skills, pioneering new domain, expansion of the domain, and evaluation and support system affected talented scientists' expertise development in the leading stage. The meaning of major patterns of expertise development were analyzed and described. Based on these analyses, educational implications for nurturing scientists were suggested.

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.