• Title/Summary/Keyword: learning study

Search Result 20,870, Processing Time 0.052 seconds

Development of Elementary Record Education Program to Raise Awareness of the Importance of Records : Focusing on UNESCO Memory of the World In Korea (기록 중요성 인식 제고를 위한 초등 기록교육 프로그램 개발 국내 유네스코 세계기록유산을 중심으로)

  • Bae, Na-yun;Lee, Suhyeon;Oh, Hyo-Jung
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.251-283
    • /
    • 2023
  • Compared to the word "memory" in general, the word "record" can be unfamiliar. This study addressed the problem that elementary school students do not have enough learning opportunities due to the lack of content on records in the curriculum. An educational program using Korea's UNESCO Memory of the world was conducted for three classes of 6th graders at J Elementary School, and the effect of the program was analyzed by administering pre- and post-surveys to students and in-depth interviews to teachers. The results of the student survey showed a significant improvement in their understanding, knowledge, satisfaction with the lessons, and need for records and Korean UNESCO Memory of the world. Teacher interviews confirmed the effect of the program, but suggested that it should be adjusted to fit the limited time available. Based on this, we verified the effect of the developed program and suggested directions for improvement of future record education programs.

Automatic Validation of the Geometric Quality of Crowdsourcing Drone Imagery (크라우드소싱 드론 영상의 기하학적 품질 자동 검증)

  • Dongho Lee ;Kyoungah Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.577-587
    • /
    • 2023
  • The utilization of crowdsourced spatial data has been actively researched; however, issues stemming from the uncertainty of data quality have been raised. In particular, when low-quality data is mixed into drone imagery datasets, it can degrade the quality of spatial information output. In order to address these problems, the study presents a methodology for automatically validating the geometric quality of crowdsourced imagery. Key quality factors such as spatial resolution, resolution variation, matching point reprojection error, and bundle adjustment results are utilized. To classify imagery suitable for spatial information generation, training and validation datasets are constructed, and machine learning is conducted using a radial basis function (RBF)-based support vector machine (SVM) model. The trained SVM model achieved a classification accuracy of 99.1%. To evaluate the effectiveness of the quality validation model, imagery sets before and after applying the model to drone imagery not used in training and validation are compared by generating orthoimages. The results confirm that the application of the quality validation model reduces various distortions that can be included in orthoimages and enhances object identifiability. The proposed quality validation methodology is expected to increase the utility of crowdsourced data in spatial information generation by automatically selecting high-quality data from the multitude of crowdsourced data with varying qualities.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

Home Economics Teachers' Concern and Perception about Home Economics Education Using the Latest Technology in the Era of the 4th Industrial Revolution (4차 산업혁명 시대의 최신 기술을 활용한 가정과교육에 대한 가정과교사의 관심과 인식)

  • Eui Jung Kim;Won Joon Lee;Do Ha Jeong;Sung Mi Cho;Jung Hyun Chae
    • Human Ecology Research
    • /
    • v.61 no.4
    • /
    • pp.673-686
    • /
    • 2023
  • The purpose of this study was to identify home economics (HE) teachers' concerns about and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution and to reveal whether they differ according to teachers' general background variables. The questionnaire survey method to measure HE teachers' concerns and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution was conducted online using the Google Questionnaire from which 150 responses were received. The main results were as follows. Firstly, HE teachers scored an average of 3.46 out of 5 for the latest technology. Among these interests in the latest technology, interest in "augmented reality and virtual reality technologies" scored the highest at an average of 3.80, while interest in "neural network machine learning" (2.78) was low. HE teacher's concerns about HE education using the latest technologies in the era of the 4th Industrial Revolution were high, with an average score of 4.40. Among these concerns for the latest technology, "concern about the results of HE education using the latest technology" scored the highest at 4.53. HE teachers' anxiety about the latest teaching technology in the era of the 4th Industrial Revolution was moderate, averaging 3.05. The highest form of anxiety was "anxiety about the impact on the job" (4.03) and the lowest was fear of "the disappearance of the teacher's job" (2.50). HE teachers' innovation resistance to the latest teaching technology was low at 2.18. Expectations of the latest technology in HE classes in the era of the 4th Industrial Revolution averaged 3.85, slightly higher than the middle of 3.

The Effect of the Innovation Capability and the Absorptive Capacity on Market Orientation, Technology Orientation, and Business Performance of IT-BPO Firms (IT-BPO 기업의 혁신역량과 흡수역량 요인이 시장지향성, 기술지향성 및 경영성과에 미치는 영향)

  • Kim, Wan-kang;Lee, So-young
    • Journal of Venture Innovation
    • /
    • v.6 no.1
    • /
    • pp.115-137
    • /
    • 2023
  • This study analyzed the relationship between organizational innovative capability and absorptive capacity, market and technology orientations, and their impact on business performance for IT-BPO companies that are required to absorb new technologies from a leading perspective in the digital transformation era. To achieve this, an online specialized research company and offline surveys were conducted on 291 domestic IT-BPO companies, and SPSS 23 was used for descriptive statistics and reliability analysis while AMOS 23 was used for hypothesis testing including validity and mediating effects. The main findings were as follows: First, in the relationship between innovation and absorptive capabilities and Market Orientation Strategic(MOS), learning capability and knowledge network capability were found to have a statistically significant positive (+) effect on MOS. In the relationship between innovation and absorptive capabilities and Technology Orientation Strategic(TOS), R&D capability, potential absorptive capacity, and realized absorptive capacity had a statistically significant positive (+) effect on TOS. Second, in the relationship between innovation and absorptive capabilities and BP, only R&D capability was found to have a significant effect on BP. Third, both market orientation and technology orientation were found to have a significant positive (+) effect on BP. These findings suggest that effective competency factors can be identified according to the market and technology orientations pursued by IT-BPO companies to increase their growth and value creation, and provide implications for developing differentiated competency enhancement strategies based on strategic objectives.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.