• 제목/요약/키워드: learning need

Search Result 2,490, Processing Time 0.03 seconds

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

A Study on Outplacement Countermeasure and Retention Level Examination Analysis about Outplacement Competency of Special Security Government Official (특정직 경호공무원의 전직역량에 대한 보유수준 분석 및 전직지원방안 연구)

  • Kim, Beom-Seok
    • Korean Security Journal
    • /
    • no.33
    • /
    • pp.51-80
    • /
    • 2012
  • This study is to summarize main contents which was mentioned by Beomseok Kim' doctoral dissertation. The purpose of this study focuses on presenting the outplacement countermeasure and retention level examination analysis about outplacement competency of special security government official through implement of questionnaire method. The questionnaire for retention level examination including four groups of outplacement competency and twenty subcategories was implemented in the object of six hundered persons relevant to outplacement more than forty age and five grade administration official of special security government officials, who have outplacement experiences as outplacement successors, outplacement losers, and outplacement expectants, in order to achieve this research purpose effectively. The questionnaire examination items are four groups of outplacement competency and twenty subcategories which are the group of knowledge competency & four subcategories including expert knowledge, outplacement knowledge, self comprehension, and organization comprehension, the group of skill competency & nine subcategories including job skill competency, job performance skill, problem-solving skill, reforming skill, communication skill, organization management skill, crisis management skill, career development skill, and human network application skill, the group of attitude-emotion competency & seven subcategories including positive attitude, active attitude, responsibility, professionalism, devoting-sacrificing attitude, affinity, and self-controlling ability, and the group of value-ethics competency & two subcategories including ethical consciousness and morality. The respondents highly regard twenty-two outplacement competency and they consider themselves well-qualified for the subcategories valued over 4.0 such as the professional knowledge, active attitude, responsibility, ethics and morality while they mark the other subcategories below average still need to be improved. Thus, the following is suggestions for successful outplacement. First, individual effort is essential to strengthen their capabilities based on accurate self evaluation, for which the awareness and concept need to be redefined to help them face up to the reality by readjusting career goal to a realistic level. Second, active career development plan to improve shortcoming in terms of outplacement competency is required. Third, it is necessary to establish the infrastructure related to outplacement training such as ON-OFF Line training system and facilities for learning to reinforce user-oriented outplacement training as a regular training course before during after the retirement.

  • PDF

A Case Study on Students' Mathematical Concepts of Algebra, Connections and Attitudes toward Mathematics in a CAS Environment (CAS 그래핑 계산기를 활용한 수학 수업에 관한 사례 연구)

  • Park, Hui-Jeong;Kim, Kyung-Mi;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.403-430
    • /
    • 2011
  • The purpose of the study was to investigate how the use of graphing calculators influence on forming students' mathematical concept of algebra, students' mathematical connection, and attitude toward mathematics. First, graphing calculators give instant feedback to students as they make students compare their written answers with the results, which helps students learn equations and linear inequalities for themselves. In respect of quadratic inequalities they help students to correct wrong concepts and understand fundamental concepts, and with regard to functions students can draw graphs more easily using graphing calculators, which means that the difficulty of drawing graphs can not be hindrance to student's learning functions. Moreover students could understand functions intuitively by using graphing calculators and explored math problems volunteerly. As a result, students were able to perceive faster the concepts of functions that they considered difficult and remain the concepts in their mind for a long time. Second, most of students could not think of connection among equations, equalities and functions. However, they could understand the connection among equations, equalities and functions more easily. Additionally students could focus on changing the real life into the algebraic expression by modeling without the fear of calculating, which made students relieve the burden of calculating and realize the usefulness of mathematics through the experience of solving the real-life problems. Third, we identified the change of six students' attitude through preliminary and an ex post facto attitude test. Five of six students came to have positive attitude toward mathematics, but only one student came to have negative attitude. However, all of the students showed positive attitude toward using graphing calculators in math class. That's because they could have more interest in mathematics by the strengthened and visualization of graphing calculators which helped them understand difficult algebraic concepts, which gave them a sense of achievement. Also, students could relieve the burden of calculating and have confidence. In a conclusion, using graphing calculators in algebra and function class has many advantages : formulating mathematics concepts, mathematical connection, and enhancing positive attitude toward mathematics. Therefore we need more research of the effect of using calculators, practical classroom materials, instruction models and assessment tools for graphing calculators. Lastly We need to make the classroom environment more adequate for using graphing calculators in math classes.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

A Study on Ecological Variables that Affect Runaway Youths at Risk in Preparation for a Independent Life - Centering on Youths at Shelters (가출위기청소년의 자립생활 준비에 영향을 미치는 생태 체계적 변인연구 - 쉼터 청소년을 중심으로 -)

  • Oh, Soo-Saing;Byun, Sang-Hae
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.2
    • /
    • pp.195-205
    • /
    • 2012
  • This study examines runaway youths at risk in a youths' shelter who are preparing for an independent life and both the facilitating and adverse factors to personal characteristics and independence of runaway youths at risk with the aim to grasp their recognition of independence and level of desire for it and find out necessary factors for a successful independence in multidimensional perspectives including the economic independence, educational independence, psychological independence, and social independence for their sound growth. This will provide the basis for desirable interventions for youths runaway youths at risk to prepare for an independent life. The findings of this study on the factors that affect the preparation for an independent life are as follows: First, as a result of analyzing the effect of micro-systematic factors on the preparation for an independent life, it turned out that problem-solving abilities and self-efficacy had influence on the preparation for a career Second, as a result of analyzing the effect of mesoscopic-systematic variables on the preparation for an independent life, it turned out that the preparation for a career were affected by whether to participate in independence preparation programs and institutional supports, and that career maturity of runaway youths at risk were affected only by the relationship with teachers and participation in independence preparation programs. Third, as a result of analyzing the effect of macro systematic variables on the preparation for an independent life, it turned out that the preparation for a career were affected by participation of the local community and service network, and that participation of the local community was an predictor variable that would affect a career maturity of runaway youths at risk. Fourth, as a result of analyzing ecological systematic variables that might affect the preparation for a career, it turned out that intervening variables and macro systematic variables had the most powerful influence on the preparation for a career among runaway youths at risk. It is necessary, therefore, to provide education programs organized by policies in order to develop problem-solving abilities and vocational capabilities so that runaway youths at risk, and to train and appoint more professional teachers at shelters. Programs for independence preparation need to be developed actively and practically in consideration of the characteristics of shelters, and the network with the local community for support also need to be established in utilization of the human resources and service programs of the community. With the understanding of leaving home of runaway youths at risk as the previous stage of an independence, there should be a housing support for their stable settlement in the perspective of housing welfare until become adults. In addition, there should be education specialized programs for occupation and careers to train runaway youths at risk as professionals including such areas as health, mentality, learning, and voluntary work for their sound growth.

  • PDF

An Analysis of the Use of Media Materials in School Health Education and Related Factors in Korea (학과보건교육에서의 매체활용실태 및 영향요인 분석)

  • Kim, Young-Im;Jung, Hye-Sun;Ahn, Ji-Young;Park, Jung-Young;Park, Eun-Ok
    • Journal of the Korean Society of School Health
    • /
    • v.12 no.2
    • /
    • pp.207-215
    • /
    • 1999
  • The objectives of this study are to explain the use of media materials in school health education with other related factors in elementary, middle, and high schools in Korea. The data were collected by questionnaires from June to September in 1998. The number of subjects were 294 school nurses. The PC-SAS program was used for statistical analysis such as percent distribution, chi-squared test, spearman correlation test, and logistic regression. The use of media materials in health education has become extremely common. Unfortunately, much of the early materials were of poor production quality, reflected low levels of interest, and generally did little to enhance health education programming. A recent trend in media materials is a move away from the fact filled production to a more affective, process-oriented approach. There is an obvious need for health educators to use high-quality, polished productions in order to counteract the same levels of quality used by commercial agencies that often promote "unhealthy" lifestyles. Health educators need to be aware of the advantages and disadvantages of the various forms of media. Selecting media materials should be based on more than cost, availability, and personal preference. Selection should be based on the goal of achieving behavioral objectives formulated before the review process begins. The decision to use no media materials rather than something of dubious quality usually be the right decision. Poor-quality, outdated, or boring materials will usually have a detrimental effect on the presentation. Media materials should be viewed as vehicles to enhance learning, not products that will stand in isolation. Process of materials is an essential part of the educational process. The major results were as follows : 1. The elementary schools used the materials more frequently. But the production rate of media materials was not enough. The budget was too small for a wide use of media materials in school health education. These findings suggest that all schools have to increase the budget of health education programs. 2. Computers offer an incredibly diverse set of possibilities for use in health education, ranging from complicated statistical analysis to elementary-school-level health education games. But the use rate of this material was not high. The development of related software is essential. Health educators would be well advised to develop a basic operating knowledge of media equipment. 3. In this study, the most effective materials were films in elementary school and videotapes in middle and high school. Film tends to be a more emotive medium than videotape. The difficulties of media selection involved the small amount of extant educational materials. Media selection is a multifaceted process and should be based on a combination of sound principles. 4. The review of material use following student levels showed that the more the contents were various, the more the use rate was high. 5. Health education videotapes and overhead projectors proved the most plentiful and widest media tools. The information depicted was more likely to be current. As a means to display both text and graphic information, this instructional medium has proven to be both effective and enduring. 6. An analysis of how effective the quality of school nurse and school use of media materials shows a result that is not complete (p=0.1113). But, the budget of health education is a significant variable. The increase of the budget therefore is essential to effective use of media materials. From these results it is recommended that various media materials be developed and be wide used.

  • PDF

Poststructural Curriculum and Topic-centered Framework of The New Science Curriculum (후기 구조주의 교육과정과 새 과학과 교육과정의 주제 중심 내용 구성)

  • Kwak, Young-Sun;Lee, Yang-Rak
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.169-178
    • /
    • 2007
  • In this research we diagnosed the actual status of the 7th National science elective curriculum and suggested a way to select and organize the content of the new science elective curriculum. The first science education reform was grounded in the structuralism where the structure of discipline was valued above everything else. On the other hand, the second science education reform suggested alternative interpretations of students' opportunity to learn, putting a brake on the structuralist thinking. According to the survey result, the majority of the science elective courses are in need for revision because the contents are overcrowded, too difficult in light of students' learning readiness, failed to draw students' interest in science, and are overlapped and repeated among the 10th grade science, high school science I and II. In particular, Earth Science II and physics II are the most unfavorable courses among students. Thus, we recommended a fundamental change be made in the new curriculum in addition to the optimization of the content. In this paper, we suggested 'topic-centered content organization' for the science elective course I, i.e., Physics I, Chemistry I, Biology I and Earth Science I that is designed for both science track and non-science track students. Since curriculum provides students with an 'opportunity to learn', a curriculum study should focus on what the 'opportunity to learn' is that students ought to be offered. Based on the result of this study, we recommended one way to select and organize the content of high school elective curriculum.