• Title/Summary/Keyword: learning language

Search Result 2,264, Processing Time 0.028 seconds

Improving the Classification of Population and Housing Census with AI: An Industry and Job Code Study

  • Byung-Il Yun;Dahye Kim;Young-Jin Kim;Medard Edmund Mswahili;Young-Seob Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, we propose an AI-based system for automatically classifying industry and occupation codes in the population census. The accurate classification of industry and occupation codes is crucial for informing policy decisions, allocating resources, and conducting research. However, this task has traditionally been performed by human coders, which is time-consuming, resource-intensive, and prone to errors. Our system represents a significant improvement over the existing rule-based system used by the statistics agency, which relies on user-entered data for code classification. In this paper, we trained and evaluated several models, and developed an ensemble model that achieved an 86.76% match accuracy in industry and 81.84% in occupation, outperforming the best individual model. Additionally, we propose process improvement work based on the classification probability results of the model. Our proposed method utilizes an ensemble model that combines transfer learning techniques with pre-trained models. In this paper, we demonstrate the potential for AI-based systems to improve the accuracy and efficiency of population census data classification. By automating this process with AI, we can achieve more accurate and consistent results while reducing the workload on agency staff.

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.

A Study on Mathematical Literacy as a Basic Literacy in the Curriculum (교육과정에서 기초소양으로써 수리 소양에 관한 연구)

  • Park, Soomin
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.349-368
    • /
    • 2023
  • The revised 2022 educational curriculum highlighted the significance of mathematical literacy as a foundational competency that can be cultivated through the learning of various subjects, along with language proficiency and digital literacy. However, due to the lack of a precise definition for mathematical literacy, there exists a challenge in systematically implementing it across all subjects in the educational curriculum. The aim of this study is to clarify the definition of mathematical literacy in the curriculum through a literature review and to analyze the application patterns of mathematical literacy in other subjects so that mathematical literacy can be systematically applied as a basic literacy in Korea's curriculum. To achieve this, the study first clarifies and categorizes the meaning of mathematical literacy through a comparative analysis of terms such as numeracy and mathematical competence via a literature review. Subsequently, the study compares the categories of mathematical literacy identified in both domestic and international educational curricula and analyzes the application of mathematical literacy in the education curriculum of New South Wales (NSW), Australia, where mathematical literacy is reflected in the achievement standards across various subjects. It is expected that understanding each property by subdividing the meaning of mathematical literacy and examining the application modality to the curriculum will help construct a curriculum that reflects mathematical literacy in subjects other than mathematics.

Multifaceted Evaluation Methodology for AI Interview Candidates - Integration of Facial Recognition, Voice Analysis, and Natural Language Processing (AI면접 대상자에 대한 다면적 평가방법론 -얼굴인식, 음성분석, 자연어처리 영역의 융합)

  • Hyunwook Ji;Sangjin Lee;Seongmin Mun;Jaeyeol Lee;Dongeun Lee;kyusang Lim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.55-58
    • /
    • 2024
  • 최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.

  • PDF

Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback (뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로)

  • Hyun-Hee Kim;Yong-Ho Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.261-282
    • /
    • 2024
  • This study proposed and evaluated electroencephalography (EEG)-based and eye-tracking-based methods to determine relevance by utilizing users' implicit relevance feedback while navigating content in a digital library. For this, EEG/eye-tracking experiments were conducted on 32 participants using video, image, and text data. To assess the usefulness of the proposed methods, deep learning-based artificial intelligence (AI) techniques were used as a competitive benchmark. The evaluation results showed that EEG component-based methods (av_P600 and f_P3b components) demonstrated high classification accuracy in selecting relevant videos and images (faces/emotions). In contrast, AI-based methods, specifically object recognition and natural language processing, showed high classification accuracy for selecting images (objects) and texts (newspaper articles). Finally, guidelines for implementing a digital library interface based on EEG, eye-tracking, and artificial intelligence technologies have been proposed. Specifically, a system model based on implicit relevance feedback has been presented. Moreover, to enhance classification accuracy, methods suitable for each media type have been suggested, including EEG-based, eye-tracking-based, and AI-based approaches.

Implementation of a Coding Style Checking System in an Online Judge System (온라인 평가 시스템에서 코딩 스타일 검사 시스템 구현)

  • Yeonghun Kim;Junseok Cheon;Gyun Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.437-443
    • /
    • 2024
  • Adhering to coding style guidelines is crucial for both companies and developers as it improves code readability and reduces the costs associated with testing and maintenance. However, teaching coding style in programming courses poses challenges. Setting up an environment for learning coding styles is hard, and there are no predefined coding style rules for beginners. From the learners' perspective, since adherence to coding styles does not affect their grades, they do not feel a strong need to learn them. This paper introduces a coding style checking system for an online evaluation system. The proposed system is implemented to check and evaluate coding styles in C, Java, and Python. Additionally, we applied 234 out of the 1,023 rules provided by the language-specific tools, which is 23.08%, allowing for the application of coding style rules according to the course progression. Moreover, we motivated learners to improve their coding style by adding quality scores to their basic scores. After introducing the coding style education system, the number of students scoring over 25 points on their initial submissions increased by 149.47%, from 18 students in the first week to 44 students in the sixth week. Learners used the coding style checking system to learn how to apply coding style rules and subsequently implemented their code in adherence to the specified coding styles.

Performance Evaluation of Vision Transformer-based Pneumonia Detection Model using Chest X-ray Images (흉부 X-선 영상을 이용한 Vision transformer 기반 폐렴 진단 모델의 성능 평가)

  • Junyong Chang;Youngeun Choi;Seungwan Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.541-549
    • /
    • 2024
  • The various structures of artificial neural networks, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been extensively studied and served as the backbone of numerous models. Among these, a transformer architecture has demonstrated its potential for natural language processing and become a subject of in-depth research. Currently, the techniques can be adapted for image processing through the modifications of its internal structure, leading to the development of Vision transformer (ViT) models. The ViTs have shown high accuracy and performance with large data-sets. This study aims to develop a ViT-based model for detecting pneumonia using chest X-ray images and quantitatively evaluate its performance. The various architectures of the ViT-based model were constructed by varying the number of encoder blocks, and different patch sizes were applied for network training. Also, the performance of the ViT-based model was compared to the CNN-based models, such as VGGNet, GoogLeNet, and ResNet. The results showed that the traninig efficiency and accuracy of the ViT-based model depended on the number of encoder blocks and the patch size, and the F1 scores of the ViT-based model ranged from 0.875 to 0.919. The training effeciency of the ViT-based model with a large patch size was superior to the CNN-based models, and the pneumonia detection accuracy of the ViT-based model was higher than that of the VGGNet. In conclusion, the ViT-based model can be potentially used for pneumonia detection using chest X-ray images, and the clinical availability of the ViT-based model would be improved by this study.

The effect of reading strategies developing through reciprocal teaching on reading comprehension, metacognition, self efficacy (상보적 수업을 활용한 읽기전략 훈련이 독해력, 초인지, 자기효능감에 미치는 효과)

  • Kim, Mi-Jeong;Eun, Hyuk-Gi
    • The Korean Journal of Elementary Counseling
    • /
    • v.11 no.2
    • /
    • pp.299-320
    • /
    • 2012
  • We have information through a variety of media such as language, pictures and internet. Since we get information through texts mostly, we can say that reading ability which enables a person to read a text and understand its meaning basically is the most essential for people to possess. Taking the advantage of the fact that a school is a place where learning and daily-life guidance can be made at the same time, we need to try encouraging students to involve in learning process and feel a sense of accomplishment by adding consultation between a teacher and a student or between a student and a student in Korean subject. This study selected two fifth grade classes of an elementary school of small and medium-sized city as an experimental group and a control group respectively and applied reading strategy program by using interaction of complementary lesson as the number of ten times during five weeks. It focused on making students interested in complementary class and encouraging them to become active participants. This study's goal is to see if the reading strategy program affects students' reading comprehension, metacognition and a sense of self-efficacy The results of the study are as in the following: first, the reading strategy program of complementary lesson is effective in students' reading comprehension and a range of factual understanding and sentimental understanding. Second, the reading strategy program of complementary lesson is effective in adjustment area as a subordinate factor of metacognition. Third, the reading strategy program of complementary lessonis effective in students' sense of self-efficacy. It is shown that experience of using new reading strategy and successful experience and help in peer-group members have a positive effects on a student's sense of self-efficacy. Forth, as the result of satisfaction evaluation over the program with the students' activity report and researchers' observation results, the study shows that the organization and operation of the program influences on students' effort and participation to reach the goal together positively. Through the results as above, we can say that the reading strategy program of complementary lesson have a positive effect on a student's reading comprehension, metacognition and a sense of self-efficacy.

  • PDF

Social Learning Values in the Justification Discourses for One Million-pyeong Park, Busan, South Korea (담론분석을 통한 100만평공원운동의 사회학습적 가치)

  • Lee, Sungkyung;Kim, Seung-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.19-27
    • /
    • 2013
  • This paper claims that the One Million-peyong Park(hereafter abbreviated as OMP) project is different from a typical citizen participatory park project by recognizing the exceptional leadership of the Civic Committee for the One Million-pyeong Park Construction(CCOMPC) in promoting and developing the OMP project. Since 2001 the CCOMPC has published a variety of written promotional materials to inform and educate the public about the project. In terms of approaching the promotional materials, this research focuses on the use of language on how the CCOMPC justifies the OMP project, namely the OMP justification discourse, and considers the discourse as a unique form of social document that represents the perspective of the CCOMPC in explaining the local environmental issues and values of urban parks to the public. Using a discourse analysis method, this research analyzes the justification discourses and investigates how they changed over the three main development phases of the OMP: the initiation and preliminary development phase(1999-2001.2), the development phase (2001.2-2008), and the time period after the greenbelt policy release on Dunchi Island(2008-present). In each discourse, the OMP project is rationalized as a citizen participation park project that (1) aims to enhance the quality of public green space in Busan, (2) is accompanied by various community engagement programs that emphasize the value of urban nature and environmental education to expand citizen participation, and (3) has contributed to the National Urban Park Bill. This research emphasizes the role of the discourses in helping the public gain a critical understanding about the local environment and values of urban parks. By analyzing the contents of the discourses, it explains the social learning values of the OMP expressed in the discourses.

A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM) (국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구)

  • Shin, Philip Wootaek;Lee, Jinhee;Kim, Jeongwoo;Shin, Dongsun;Lee, Youngsang;Hwang, Seung Ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.169-178
    • /
    • 2020
  • The reductions of troops/human resources, and improvement in combat power have made Korean Department of Defense actively adapt 4th Industrial Revolution technology (Artificial Intelligence, Big Data). The defense information system has been developed in various ways according to the task and the uniqueness of each military. In order to take full advantage of the 4th Industrial Revolution technology, it is necessary to improve the closed defense datamanagement system.However, the establishment and usage of data standards in all information systems for the utilization of defense big data and artificial intelligence has limitations due to security issues, business characteristics of each military, anddifficulty in standardizing large-scale systems. Based on the interworking requirements of each system, data sharing is limited through direct linkage through interoperability agreement between systems. In order to implement smart defense using the 4th Industrial Revolution technology, it is urgent to prepare a system that can share defense data and make good use of it. To technically support the defense, it is critical to develop Multi Repository Meta-Data Management (MRMM) that supports systematic standard management of defense data that manages enterprise standard and standard mapping for each system and promotes data interoperability through linkage between standards which obeys the Defense Interoperability Management Development Guidelines. We introduced MRMM, and implemented by using vocabulary similarity using machine learning and statistical approach. Based on MRMM, We expect to simplify the standardization integration of all military databases using artificial intelligence and bigdata. This will lead to huge reduction of defense budget while increasing combat power for implementing smart defense.