In this paper, we study Weierstrass semigroups of ramification points on double covers of plane curves of degree 6. We determine all the Weierstrass semigroups when the genus of the covering curve is greater than 29 and the ramification point is on a total flex.
The learning curve has an important effect the growth of corporation. But, in Korea, the study and inference on the learning rate of each industry are unprepared, and so, Korean industires have difficult in productivity and cost. At this point, this study infers the learning rate of the oil industries and investigates the productivity and growth of them. In conclusion, this study presents the direction of the oil industries' development. With the intention of this objects, this study seizes the status which is concerned the total quantity, the operating rate, the plant capacity, the indicators concerning productivity, the investment of R & D and the scales, and then, infers and verifies the relevancy in connection with the learning rate. In the oil industry, the average rate of learning is 65.96% from 1982 to 1994 which the total quantity and the average operation time are used to infer the rate. To observe the low rate within a same period of time, this study takes the consequences that the learning rate is almost indentical with them each year. This steady state is caused by a difference between the employee and the decision maker about the acquirement and assimiliated of technology. When the high-quality technologies posses the environment to applicate in the scene of labor with them, this technology applies to the productivities. As the learning rate increases, the productivity has more effectiveness. The result of analysis about the effectiveness of the learning rate follows that the R & D unfoldes to exist and does not contribute to the growth of the oil industry. To analyze the variables of the growth, such as the learning rate, the investement of R & D, the operating rate and the gross value added to property, plant and equipment, the model is established and examined. The business strategy in the oil industry must be developed to achive the internal growth as well as the external.
일반적인 비정상 탐지 알고리즘은 사전 데이터를 이용하여 학습된다. 따라서 시간에 따른 정상 데이터의 특징이 변화되는 경우에 기존의 배치 학습 기반 알고리즘의 성능 저하가 불가피하다. 본 논문에서는 정상 데이터의 점진적 특징 변화를 고려할 수 있는 온라인 비정상 탐지 알고리즘을 제안한다. 제안하는 알고리즘은 단일 클래스 분류 모델에 기반하며 오프라인 및 온라인 단계의 학습 과정을 포함한다. 제안된 알고리즘의 오프라인 학습 단계에서는 사전 데이터가 잠재 공간의 중심에 근접하도록 학습하고, 이후 온라인 학습단계에서는 신규 데이터에 의한 점진적 잠재 공간의 중심을 갱신하고, 갱신된 중심을 기준으로 계속 학습을 진행한다. 공개된 수중 음향 데이터를 이용한 실험결과 제안된 온라인 비정상 탐지 알고리즘은 점진적 중심 갱신 및 학습을 위해 단지 2 % 정도의 추가 학습시간이 소요되는 것으로 확인되었다. 반면에 시변 정상데이터가 수신되는 경우에 오프라인 학습 모델과 비교하여 19.10 % 개선된 Area Under the receiver operating characteristic Curve(AUC) 성능을 보였다.
Background: The ideal alternative airway device should be intuitive to use, yielding proficiency after only a few trials. The Clarus Video System (CVS) is a novel optical stylet with a semi-rigid tip; however, the learning curve and associated orodental trauma are poorly understood. Methods: Two novice practitioners with no CVS experience performed 30 intubations each. Each trial was divided into learning (first 10 intubations) and standard phases (remaining 20 intubations). Total time to achieve successful intubation, number of intubation attempts, ease of use, and orodental trauma were recorded. Results: Intubation was successful in all patients. In 51 patients (85%), intubation was accomplished in the first attempt. Nine patients required two or three intubation attempts; six were with the first 10 patients. Learning and standard phases differed significantly in terms of success at first attempt, number of attempts, and intubation time (70% vs. 93%, $1.4 {\pm}0.7$ vs. $1.1{\pm}0.3$, and $71.4{\pm}92.3s$ vs. $24.6{\pm}21.9s$, respectively). The first five patients required longer intubation times than the subsequent five patients ($106.8{\pm}120.3s$ vs. $36.0{\pm}26.8s$); however, the number of attempts was similar. Sequential subgroups of five patients in the standard phase did not differ in the number of attempts or intubation time. Dental trauma, lip laceration, or mucosal bleeding were absent. Conclusions: Ten intubations are sufficient to learn CVS utilization properly without causing any orodental trauma. A relatively small number of experiences are required in the learning curve compared with other devices.
본 연구는 고등학교 통계 영역의 확률분포에 제시되어 있는 정규분포를 이항분포에서 정규분포로의 근사, 정규분포곡선의 탐구, Monte Carlo 방법에 의한 정규분포곡선의 넓이 탐구, 정규분포곡선의 선형변환, 그리고 여러 형태의 정규분포곡선 탐구 등의 내용을 중심으로 CAS 계산기를 활용하여 탐구해보고자 한다. CAS 계산기의 도구적 기능인 사소화, 실험, 시각화, 집중의 측면에서 볼 때 지필로서는 교육과정에 제시된 확률분포의 목표를 달성하기 불가능하다고 판단된다. 따라서 본 연구에서는 CAS 계산기를 활용하여 정규분포곡선의 다양한 성질을 탐구하고 이러한 과정과 결과로부터 정규분포곡선에 대한 교수학적 시사점을 도출하고자 한다.
In mathematics education, teaching-learning activity can be divided largely into the understanding the mathematical concepts, derivation of principles and laws acquirement of the mathematical abilities. We utilize various media, teaching tools, audio-visual materials, manufacturing materials for understanding mathematical concepts. But sometimes we cannot define or explain correctly the concepts as well as the derivation of principles and laws by these materials. In order to solve the problem we can use the computer. In this paper, ′the process of the length of curve being equal to the sum of the vectors when intervals get smaller′ and ′the process of calculating volume of spinning curve by using definite integral.′ Using the computers is more visible than other educational instruments like blackboards, O.H.Ps., etc. Also it can help students with solving mathematical problems intuitively. Consequently more effective teaching-learning activity can be done. Usage of computers is the best method for improving the mathematical abilities because computers have functions of the immediate reaction, operation, reference and deduction. One of the important characters of mathematics is accuracy, so we use computers for improving mathematical abilities. This paper is about the program focused on the part of "the application of definite integral", which exists in mathematical curriculum the second and third grade of high school. When this study is used for students as assisting materials, it is expected the following educational effect. 1. Students will have precise concepts because they can understand what they learn intuitively. 2. Students will have positive thought by arousing interests of learning because this program is composed of pictures, animations with effectiveness of sound. 3. It is possible to change the teacher-centered instruction into the student-centered instruction. 4. Students will understand the relation between velocity and distance correctly because they can see the process of getting the length of curve by vector through the monitor. For the purpose of increasing the efficiencies and qualities of mathematics education, we have to seek the various learning-teaching methods. But considering that no computer can replace the teacher′s role, teachers have to use the CIA program carefully.
This study aims to experiment on learning French intonation, based on the visualization of melody, which was employed in the early sixties to reeducate those with communication disorders. The visualization of melody in this paper, however, was used to the foreign language learning and produced successful results in many ways, especially in learning foreign intonation. In this paper, we used the PitchWorks to visualize some French intonation samples and experiment on learning intonation based on the bitmap picture projected on a screen. The students could see the melody curve while listening to the sentences. We could observe great achievement on the part of the students in learning intonations, as verified by the result of this experiment. The students were much more motivated in learning and showed greater improvement in recognizing intonation contour than just learning by hearing. But lack of animation in the bitmap file could make the experiment nothing but a boring pattern practices. It would be better if we can use a sound analyser, as like for instance a PitchWorks, which is designed to analyse the pitch, since the students can actually see their own fluctuating intonation visualized on the screen.
본 연구에서는 영단어 학습 콘텐츠 개발 필요에 따른 새로운 스마트 영단어 암기방법을 설계 제안한다. 이 방법은 스마트 폰에서 효과적으로 영단어 학습을 지원하는 콘텐츠로 개발 가능하다. 본 연구의 핵심 아이디어는 첫째, 30개의 단어를 하루에 3분씩 10회(학습 1회 및 복습 9회)로 나누어 학습한다. 둘째, 망각주기를 고려하여 최초학습 1일 후, 10일 후, 30일 후 등의 3회 반추 복습을 제안한다. 본 콘텐츠의 개발과정은 크게 앱ID 생성부, 앱 접속부, 알람 설정부, 단어학습 처리부, 학습결과 모니터링부 등 5개의 단계로 이루어져 있다. 제안된 방법은 에빙하우스 주기적 반복 학습전략으로 최적화되어 있어 사용자의 영단어 학습 만족도를 높일 수 있다.
본 논문에서는 LSTM(Long Short-Term Memory)을 기반으로 하는 Deep Learning 모델을 구축하여 인간의 습관적 특성을 고려한 악성 도메인 탐지 방법을 제시한다. DGA(Domain Generation Algorithm) 악성 도메인은 인간의 습관적인 실수를 악용하여 심각한 보안 위협을 초래한다. 타이포스쿼팅을 통한 악성 도메인의 변화와 은폐 기술에 신속히 대응하고, 정확하게 탐지하여 보안 위협을 최소화하는 것이 목표이다. LSTM 기반 Deep Learning 모델은 악성코드별 특징을 분석하고 학습하여, 생성된 도메인을 악성 또는 양성으로 자동 분류한다. ROC 곡선과 AUC 정확도를 기준으로 모델의 성능 평가 결과, 99.21% 이상 뛰어난 탐지 정확도를 나타냈다. 이 모델을 활용하여 악성 도메인을 실시간 탐지할 수 있을 뿐만 아니라 다양한 사이버 보안 분야에 응용할 수 있다. 본 논문은 사용자 보호와 사이버 공격으로부터 안전한 사이버 환경 조성을 위한 새로운 접근 방식을 제안하고 탐구한다.
Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.