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WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF

PLANE CURVES OF DEGREE SIX WITH TOTAL FLEXES

Seon Jeong Kim and Jiryo Komeda

Abstract. In this paper, we study Weierstrass semigroups of ramifica-

tion points on double covers of plane curves of degree 6. We determine
all the Weierstrass semigroups when the genus of the covering curve is

greater than 29 and the ramification point is on a total flex.

1. Introduction

Let C be a smooth irreducible curve of genus g, where a curve means a
projective 1-dimensional algebraic variety over an algebraically closed field k
of characteristic 0. For a point P of C we define the Weierstrass semigroup
H(P ) of P as follows:

H(P ) = {n ∈ N0 | there is a rational function f on C such that (f)∞ = nP},
where N0 is the additive monoid of non-negative integers and (f)∞ means the
polar divisor of f . Then H(P ) is a numerical semigroup of genus g, which
means a submonoid of N0 whose complement is a finite set with cardinality g.
The genus of a numerical semigroup H is denoted by g(H). For a numerical
semigroup H we denote by d2(H) the set consisting of the elements h with

2h ∈ H, which is a numerical semigroup. If π : C̃ −→ C is a double covering of
a curve with a ramification point P̃ over P , then we have d2(H(P̃ )) = H(P ).

When we treat a double covering π : C̃ −→ C of a curve we assume that C
and C̃ are smooth curves.

We will study about the numerical semigroups H which are the Weierstrass
semigroups of ramification points on double covers of smooth plane curves of
degree d. In this article such a numerical semigroup H is said to be of double
covering type of a plane curve of degree d, which is abbreviated to DCP of
degree d. We pose the following problem:
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DCP Hurwitz’ Problem. Let d be a positive integer. Then determine all
the Weierstrass semigroups which are DCP of degree d.

To describe the known facts for DCP Hurwitz’ Problem we use the nota-
tion 〈a1, . . . , as〉 which means the additive monoid generated by a1, . . . , as for
positive integers a1, . . . , as. If d2(H) is the Weierstrass semigroup of a point
on a smooth plane curve of degree d 5 3, i.e., d2(H) = N0 or 〈2, 3〉, then we
can show that H is DCP (for example, see [6]). In the case d = 4 the papers
[1], [2], [3] and [7] gave all the numerical semigroups of DCP of degree 4. In
the recent monograph [5] the authors determine the numerical semigroups H
which are DCP of degree 5 in the case where g(H) = 18 and d2(H) = 〈4, 5〉 or
〈4, 7, 10, 13〉.

Let C be a smooth plane curve and P its point. Let Z be a plane curve. We
denote by C.Z the intersection divisor of C with Z. Moreover, let ordP (C.Z)
be the multiplicity of C.Z at P . We denote by TP the tangent line at P on C.
If P is a total flex on a smooth plane curve C of degree 6, i.e., ordP C.TP = 6,
then H(P ) = 〈5, 6〉. The following is the main result of this article:

Main Theorem. If H is a numerical semigroup of genus = 30 with d2(H) =
〈5, 6〉, then it is DCP of degree 6.

2. Preliminary results

In this section we review some known facts which will be used in the proof
of Main Theorem.

Let C be a smooth plane curve and P1, . . . , Pn points of C among which we
permit the same points. For a positive integerm we denote by C∗(m;P1, . . . , Pn)
the set of plane curves X of degree m such that X.C = P1 + · · ·+Pn. We con-
sider the set C(m;P1, . . . , Pn) = C∗(m;P1, . . . , Pn) ∪ {0} as a k-vector space.
The points P1, . . . , Pn impose independent condition on the system of curves of
degree m if

dimC(m;P1, . . . , Pn) =
(m+ 2)(m+ 1)

2
− n.

The points P1, . . . , Pn fail to impose independent condition on the system of
curves of degree m if

dimC(m;P1, . . . , Pn) >
(m+ 2)(m+ 1)

2
− n.

Lemma 2.1. i) 2 points impose independent condition on the system of lines.
ii) 3 points fail to impose independent condition on the system of lines if and

only if the three points are collinear.
iii) 3 points impose independent condition on the system of conics.
iv) 4 points fail to impose independent condition on the system of conics if

and only if the four points are collinear.
v) 5 points fail to impose independent condition on the system of conics if

and only if there are four collinear points among them.
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vi) 6 points fail to impose independent condition on the system of conics if
and only if there are four collinear points among them or the six points are on
a conic.

vii) 4 points impose independent condition on the system of cubics.
viii) 5 points fail to impose independent condition on the system of cubics if

and only if the five points are collinear.
ix) 6 points fail to impose independent condition on the system of cubics if

and only if there are five collinear points among them.
x) 7 points fail to impose independent condition on the system of cubics if

and only if there are five collinear points among them.
xi) 8 points fail to impose independent condition on the system of cubics if

and only if there are five collinear points among them or the eight points are
on a conic.

Theorem 2.2 (Cayley-Bacharach). Let C be a non-singular plane curve. Let
X1 and X2 be two plane curves of degree d and e resp., meeting in a collection
Γ of de points of C with multiplicity. Let Y be a curve of degree d+ e− 3 such
that the intersection Y.C contains all but one point of Γ. Then Y.C contains
that remaining point also.

Theorem 2.2 of [7] is replaced by the following in our case. Indeed, to show
that H is DCP we use this many times.

Theorem 2.3. Let (C,P ) be a pointed non-singular plane curve of degree 6
and H a numerical semigroup with d2(H) = H(P ) and g(H) = 30. Set

n = min{h ∈ H | h is odd}.

We note that

g(H) = 20 +
n− 1

2
− r

with some non-negative integer r (for example, see Lemma 3.1 in [1]). Let
Q1, . . . , Qr be points of C different from P with h0(Q1 + · · ·+Qr) = 1. More-
over, assume that H has an expression

H = 2d2(H) + 〈n, n+ 2l1, . . . , n+ 2ls〉

of generators with positive integers l1, . . . , ls such that for any cubic C3 the
inequality C3.C = (li − 1)P + Q1 + · · · + Qr implies that C3.C = liP + Q1 +
· · ·+Qr, i.e.,

h0(K − (li − 1)P −Q1 − · · · −Qr) = h0(K − liP −Q1 − · · · −Qr),

where K is a canonical divisor on C. Then the complete linear system |nP −
2Q1 − · · · − 2Qr| is base point free and there is a double covering π : C̃ −→ C

with a ramification point P̃ over P satisfying H(P̃ ) = H, i.e., H is DCP of
degree 6.
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3. Proof of Main Theorem

In this section, let H be a numerical semigroup with g(H) = 30, d2(H) = H6

and n = 25 where we set H6 = 〈5, 6〉 and n = min{h ∈ H | h is odd}. Let r(H)
be the number of the odd elements of H which are larger than n and less than
or equal to n+ 38. We associate to H the diagram where �, ◦ and × indicate
an integer in M(H), H\M(H) and N0\H respectively where M(H) denotes
the minimal set of generators for the monoid H. For example, we associate the
following diagram with the numerical semigroup H = 2H6 + 〈n, n+ 4, n+ 18〉:

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × � × ×

(n) • ◦ ◦ � ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Hence, we get 0 5 r(H) 5 10. Moreover, we obtain g(H) = 20 + n−1
2 − r(H).

Let t(H) be the cardinality of the set

{u ∈M(H) | u is an odd integer distinct from n}.

The proof of Main Theorem is divided into forty two cases classified by the
value of t(H) and the generators which are odd.

(I) The case t(H) = 0. Then H = 2H6 + 〈n〉, which is DCP by Proposition
2.3 in [4].

(II) The case t(H) = 1. There are ten kinds of numerical semigroups.
II-1) H = 2H6 + 〈n, n+ 38〉. By (i) in Theorem 2.5 in [5] H is DCP.
II-2) H = 2H6 + 〈n, n+ 28〉. By (i) in Theorem 2.5 in [5] H is DCP.
II-3) H = 2H6 + 〈n, n+ 26〉. By (ii) in Theorem 2.5 in [5] H is DCP.
II-4) H = 2H6 + 〈n, n+ 18〉. By (i) in Theorem 2.5 in [5] H is DCP.
II-5) H = 2H6 + 〈n, n+ 16〉. By (iii) in Theorem 2.5 in [5] H is DCP.
II-6) H = 2H6 + 〈n, n+ 14〉. By (ii) in Theorem 2.5 in [5] H is DCP.
II-7) H = 2H6 + 〈n, n+ 8〉. By (i) in Theorem 2.5 in [5] H is DCP.
II-8) H = 2H6 + 〈n, n+ 6〉. We have the following diagram.

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × � ×

(n) • × ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let C be a plane curve of degree 6 defined by an equation

(yz2 − x3)

(
1

2
z3 + ax3

)
+ (yz2 + x3 − 2y3)

(
1

2
z3 + by3

)
= 0,
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that is to say,

z3(yz2 − y3) + ax3(yz2 − x3) + by3(yz2 + x3 − 2y3) = 0,

where a and b are general constants. Then the curve C is non-singular. Let C31

and C32 be cubics defined by yz2−x3 = 0 and yz2 +x3− 2y3 = 0 respectively.
The former one has only one singularity (0 : 1 : 0) and it is irreducible. The
latter one is non-singular. Let P = (0 : 0 : 1) ∈ C. Then TP .C = 6P , where
the tangent line TP is defined by the equation y = 0. Let ζ be a primitive 6-th
root of unity. For i = 1, . . . , 6 we set Qi = (ζi : ζ3i : 1) ∈ C. Then we have

C31.C32 = 3P +Q1 + · · ·+Q6 and C3i.C = 3P +Q1 + · · ·+Q6 for i = 1, 2.

Since C3i’s are irreducible, any four points of P,Q1, . . . , Q6 are not collinear
and the seven points P,Q1, . . . , Q6 are not on a conic. Hence, by Lemma 2.1
xi) we get

h0(K − 2P −Q1 − · · · −Q6) = 10− 8 = 2 = h0(K − 3P −Q1 − · · · −Q6).

Hence, H is DCP by Theorem 2.3.
From now on, let us take a pointed curve (C,P ) with H(P ) = H6 and

distinct points Q1, . . . , Qr of C with r = r(H) different from P , which are
defined in each item. We set Er = Q1 + · · ·+Qr.

II-9) H = 2H6 + 〈n, n+ 4〉. We have the following diagram.

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × � × ×

(n) • ◦ ◦ × ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 through P such that the intersection of C
and L1 (resp. L2) contains distinct points Q1, Q2 and Q3 (resp. Q4, Q5 and Q6).
Let C3 be a cubic with C3.C = P +Q1 + · · ·+Q6. Then we get C3 = L1L2L
with a line L which means that

h0(K − P −Q1 − · · · −Q6) = h0(K − 2P −Q1 − · · · −Q6) = 3.

Hence, H is DCP by Theorem 2.3.
II-10) H = 2H6 + 〈n, n+ 2〉. By (ii) in Theorem 2.5 in [5] H is DCP.
(III) The case t(H) = 2. There are twenty kinds of numerical semigroups
III-1) H = 2H6 + 〈n, n + 26, n + 28〉. By (iv) in Theorem 2.5 in [5] H is

DCP.
III-2) H = 2H6 + 〈n, n + 14, n + 28〉. By (iv) in Theorem 2.5 in [5] H is

DCP.
III-3) H = 2H6 + 〈n, n+ 2, n+ 28〉. By (iv) in Theorem 2.5 in [5] H is DCP.
III-4) H = 2H6 + 〈n, n+18, n+26〉. By (v) in Theorem 2.5 in [5] H is DCP.
III-5) H = 2H6 + 〈n, n+ 8, n+ 26〉. By (v) in Theorem 2.5 in [5] H is DCP.
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III-6) H = 2H6 + 〈n, n + 16, n + 18〉. By (vii) in Theorem 2.5 in [5] H is
DCP.

III-7) H = 2H6 + 〈n, n + 14, n + 18〉. By (vi) in Theorem 2.5 in [5] H is
DCP.

III-8) H = 2H6 + 〈n, n + 4, n + 18〉. See the beginning of this section for
the diagram. Let us take distinct lines L1 and L2 through P such that the
intersection of C and L1 (resp. L2) contains distinct points Q1, Q2 and Q3

(resp. Q4, Q5 and Q6). Take a point Q7 of C which does not lie on L1 ∪ L2.
Let C3 be a cubic through the eight points P , Q1, . . . , Q7. Then C3 should be a
reduced curve L1L2L with a line L 3 Q7. In this case we get C3.C = 2P +E7.
Hence, we get h0(K − P − E7) = h0(K − 2P − E7) = 2. Moreover, we have
h0(K − 4P − E7) = 0. H is DCP by Theorem 2.3.

III-9) H = 2H6 + 〈n, n+ 2, n+ 18〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × × ×

(n) • ◦ × � ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take lines L1 and L2 with L1 3 P and L2 63 P such that the intersection
of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5

and Q6). Let C3 be a cubic through the seven points P , Q1, . . . , Q6. Then C3

must be a curve L1C2 with a conic C2 3 Q5 and Q6. Hence, by Lemma 2.1 iii)
we get

h0(K − E6) = h0(K − P − E6) = 6− 2 = 4.

Let C ′3 be a cubic with C ′3.C = 8P + E6. Then C ′3 must be a curve L1TPL2

which implies that C ′3.C 6= 8P . This is a contradiction. Hence, we obtain
h0(K − 8P − E6) = 0.

III-10) H = 2H6 + 〈n, n + 14, n + 16〉. By (viii) in Theorem 2.5 in [5] H is
DCP.

III-11) H = 2H6 + 〈n, n+ 8, n+ 16〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × × �

(n) • × � ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 not through P such that the intersection
of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5

and Q6). Let C3 be a cubic with C.C3 = 3P + Q1 + · · · + Q6. Then C3 must
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be the curve L1TPL2, which implies that

h0(K − 3P − E6) = · · · = h0(K − 6P − E6) = 1 and h0(K − 7P − E6) = 0.

III-12) H = 2H6 + 〈n, n+ 2, n+ 16〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × × ×

(n) • ◦ � × ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 through P such that the intersection of
C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5 and
Q6). Let C3 be a cubic with C3.C = E6. Then C3 = L1C2 with a conic
C2 3 Q5, Q6. Hence, by Lemma 2.1 iii) we get

h0(K − E6) = h0(K − P − E6) = 6− 2 = 4.

Moreover, let C3.C = 4P + E6. Then we obtain C3 = L1L2TP , which implies
that

h0(K − 4P − E6) = h0(K − 8P − E6) = 1.

III-13) H = 2H6 + 〈n, n+ 8, n+ 14〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × × �

(n) • � × ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take lines L1 and L2 with L1 63 P and L2 3 P such that the intersection
of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5

and Q6). Let C3 be a cubic through the seven points P,Q1, . . . , Q6. Then
C3 = L1L2L with a line L, which means that

h0(K − 3P − E6) = h0(K − 7P − E9) = 1.

III-14) H = 2H6 + 〈n, n+ 6, n+ 14〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × � ×

(n) • � ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)
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Let us take distinct lines L1, L2 and L3 through P such that the intersection of
C and L1 (resp. L2, L3) contains distinct points Q1, Q2 and Q3 (resp. Q4 and
Q5, Q6 and Q7). Let C3 be a cubic with C3.C = 2P +E7. Then C3 = L1L2L3,
which implies that

h0(K−2P −E7) = h0(K−3P −E7) = 1 and h0(K−4P −Q1−· · ·−Q7) = 0.

III-15) H = 2H6 + 〈n, n+ 6, n+ 8〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × � �

(n) • × ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 not through P such that the intersection
of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5,
Q6 and Q7). Let C3 be a cubic through the seven points Q1, . . . , Q7. Then C3

must be the curve L1L2L with a line L. If a cubic C3 satisfies C3.C = 2P +E7,
then C3 = L1L2TP , which implies that

h0(K − 2P − E7) = · · · = h0(K − 6P − E7) = 1.

III-16) H = 2H6 + 〈n, n+ 4, n+ 8〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × � × �

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 with L1 63 P , L2 3 P and L3 3 P
such that the intersection of C and L1 (resp. L2, L3) contains distinct points
Q1, Q2, Q3 and Q4 (resp. Q5 and Q6, Q7 and Q8). Let C3 be a cubic through
the nine points P,Q1, . . . , Q8. Then C3 is the curve L1L2L3, which implies
that

h0(K − P − E8) = h0(K − 2P − E8) = 1 and h0(K − 3P − E8) = 0.

III-17) H = 2H6 + 〈n, n+ 2, n+ 8〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × × �

(n) • ◦ × ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)
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Let us take distinct lines L1 and L2 with L1 63 P and L2 3 P such that the
intersection of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4

(resp. Q5, Q6 and Q7). Let C3 be a cubic through the seven points Q1, . . . , Q7.
Then C3 must be a curve L1L2L with a line L. Hence, we obtain

h0(K −Q1 − · · · −Q7) = h0(K − P −Q1 − · · · −Q7) = 3,

h0(K − 3P −Q1 − · · · −Q7) = h0(K − 7P −Q1 − · · · −Q7) = 1.

III-18) H = 2H6 + 〈n, n+ 4, n+ 6〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × � � ×

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 through P such that the intersection of
C and L1 (resp. L2, L3) contains distinct points Q1, Q2 and Q3 (resp. Q4, Q5

and Q6, Q7 and Q8). Let C3 be a cubic with C3.C = P + E8. Then we get
C3 = L1L2L3, which implies that

h0(K − P − E8) = h0(K − 3P − E8) = 1.

III-19) H = 2H6 + 〈n, n+ 2, n+ 6〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × � ×

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 through P such that the intersection of
C and L1 (resp. L2, L3) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5

and Q6, Q7 and Q8). Let C3 be a cubic with C3.C = E8. Then we get
C3 = L1C2 with C2 3 Q5, Q6, Q7, Q8, which means that

h0(K − E8) = h0(K − P − E8) = 6− 4 = 2

from by Lemma 2.1 iv). Moreover, let C3.C = 2P + E8. Then C3 = L1L2L3,
which implies that

h0(K − 2P − E8) = h0(K − 3P − E8) = 1.

III-20) H = 2H6 + 〈n, n+ 2, n+ 4〉.
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→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � � × ×

(n) • ◦ ◦ × ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 through P such that the intersection of
C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5, Q6

and Q7). Let C3 be a cubic with C3.C = E7. Then we get C3 = L1L2L with
a line L, which means that

h0(K − E7) = h0(K − 2P − E7) = 3.

(IV) The case t(H) = 3. There are ten kinds of numerical semigroups.
IV-1) H = 2H6 + 〈n, n+ 14, n+ 16, n+ 18〉.

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × × ×

(n) • � � � ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let Q1, . . . , Q6 be general six points of C. Since we have h0(K − 6P ) =
h0(12P ) = 6, we obtain h0(K − 6P − E6) = 0. H is DCP by Theorem 2.3.

IV-2) H = 2H6 + 〈n, n+ 2, n+ 16, n+ 18〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × × ×

(n) • ◦ � � ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 with L1 3 P and L2 63 P such that the
intersection of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and
Q4 (resp. Q5 and Q6). Take a point Q7 of C which does not lie on L1 ∪ L2.
Let C3 be a cubic through the seven points Q1, . . . , Q7. Then C3 must be the
reduced curve L1C2, where C2 is a conic containing Q5, Q6 and Q7. Hence, by
Lemma 2.1 iii) we obtain

h0(K − E7) = h0(K − P − E7) = 6− 3 = 3.

We get h0(K−8P −E7) = 0, because there are no cubics C3 such that C3.C =
8P + E7.

IV-3) H = 2H6 + 〈n, n+ 2, n+ 4, n+ 18〉.
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→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � � × ×

(n) • ◦ ◦ � ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 through P such that the intersection of C
and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5, Q6 and
Q7). Take a point Q8 of C which does not lie on L1 ∪ L2. Let C3 be a cubic
through the eight points Q1, . . . , Q8. Then C3 must be a curve L1L2L with a
line L 3 Q8. Hence, we get

h0(K−E8) = h0(K−P−E8) = h0(K−2P−E8) = 2 and h0(K−4P−E8) = 0.

IV-4) H = 2H6 + 〈n, n+ 8, n+ 14, n+ 16〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × × �

(n) • � � ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 with L1 63 P and L2 3 P such that the
intersection of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4

(resp. Q5 and Q6). Take a point Q7 of C which does not lie on L1∪L2. Let C3

be a cubic through the eight points P,Q1, . . . , Q7. Then we get C3 = L1L2L
with L 3 Q7, which implies that h0(K − 3P − E7) = 0.

IV-5) H = 2H6 + 〈n, n+ 2, n+ 8, n+ 16〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × × �

(n) • ◦ � ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 with L1 63 P and L2 3 P such that the
intersection of C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4

(resp. Q5, Q6 and Q7). Take a point Q8 of C which does not lie on L1 ∪ L2.
Let C3 be a cubic through the eight points Q1, . . . , Q8. Then C3 must be a
curve L1L2L with a line L 3 Q8. Hence, we get

h0(K − E8) = h0(K − P − E8) = 2 and h0(K − 3P − E8) = 0.

IV-6) H = 2H6 + 〈n, n+ 6, n+ 8, n+ 14〉.
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→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × × � �

(n) • � ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1 and L2 not through P such that the intersection of
C and L1 (resp. L2) contains distinct points Q1, Q2, Q3 and Q4 (resp. Q5, Q6

and Q7). Take a point Q8 of C not lying on the union L1 ∪ L2. Let C3 be a
cubic through the eight points Q1, . . . , Q8. Then C3 must be the curve L1L2L
with a line L containing Q8, which implies that h0(K−2P−Q1−· · ·−Q8) = 0.

IV-7) H = 2H6 + 〈n, n+ 4, n+ 6, n+ 8〉.

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• × � � �

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 not through P such that the inter-
section of C and L1 (resp. L2, L3) contains distinct points Q1, Q2, Q3 and Q4

(resp. Q5, Q6 and Q7, Q8 and Q9). Let C3 be a cubic through the nine points
Q1, . . . , Q9. Then C3 = L1L2L3, which means that h0(K − P − E9) = 0.

IV-8) H = 2H6 + 〈n, n+ 2, n+ 6, n+ 8〉.

→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � × � �

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 with L1 63 P , L2 63 P and L3 3 P
such that the intersection of C and L1 (resp. L2, L3) contains distinct points
Q1, Q2, Q3 andQ4 (resp.Q5, Q6 andQ7, Q8 andQ9). Let C3 be a cubic through
the nine points Q1, . . . , Q9. Then C3 must be the curve L1L2L3, which means
that

h0(K − E9) = h0(K − P − E9) = 1 and h0(K − 2P − E9) = 0.

IV-9) H = 2H6 + 〈n, n+ 2, n+ 4, n+ 8〉.
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→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � � × �

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 with L1 3 P , L2 3 P and L3 63 P
such that the intersection of C and L1 (resp. L2, L3) contains distinct points
Q1, Q2, Q3 andQ4 (resp.Q5, Q6 andQ7, Q8 andQ9). Let C3 be a cubic through
the nine points Q1, . . . , Q9. Then C3 must be the curve L1L2L3. Hence, we
obtain

h0(K − E9) = h0(K − 2P − E9) = 1 and h0(K − 3P − E9) = 0.

IV-10) H = 2H6 + 〈n, n+ 2, n+ 4, n+ 6〉.
→ +2 (n+ 2) (n+ 4) (n+ 6) (n+ 8)
• � � � ×

(n) • ◦ ◦ ◦ ↓ +10
↘+12 (n+ 12) • ◦ ◦

(n+ 24) • ◦
(n+ 36) •

(n+ 48)

Let us take distinct lines L1, L2 and L3 through P such that the intersec-
tion of C and L1 (resp. L2, L3) contains distinct points Q1, Q2, Q3 and Q4

(resp. Q5, Q6 and Q7, Q8 and Q9). Let C3 be a cubic with C3.C = E9. Then
C3 = L1L2L3, which implies that

h0(K − E9) = h0(K − 3P − E9) = 1.

(V) The case t(H) = 4. Then H = 2H6 + 〈n, n+ 2, n+ 4, n+ 6, n+ 8〉. By
Corollary 2.8 in [4] H is DCP.
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