WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF Plane curves of degree six with total flexes

Seon Jeong Kim and Jiryo Komeda

Abstract

In this paper, we study Weierstrass semigroups of ramification points on double covers of plane curves of degree 6 . We determine all the Weierstrass semigroups when the genus of the covering curve is greater than 29 and the ramification point is on a total flex.

1. Introduction

Let C be a smooth irreducible curve of genus g, where a curve means a projective 1-dimensional algebraic variety over an algebraically closed field k of characteristic 0 . For a point P of C we define the Weierstrass semigroup $H(P)$ of P as follows:
$H(P)=\left\{n \in \mathbb{N}_{0} \mid\right.$ there is a rational function f on C such that $\left.(f)_{\infty}=n P\right\}$, where \mathbb{N}_{0} is the additive monoid of non-negative integers and $(f)_{\infty}$ means the polar divisor of f. Then $H(P)$ is a numerical semigroup of genus g, which means a submonoid of \mathbb{N}_{0} whose complement is a finite set with cardinality g. The genus of a numerical semigroup H is denoted by $g(H)$. For a numerical semigroup H we denote by $d_{2}(H)$ the set consisting of the elements h with $2 h \in H$, which is a numerical semigroup. If $\pi: \tilde{C} \longrightarrow C$ is a double covering of a curve with a ramification point \tilde{P} over P, then we have $d_{2}(H(\tilde{P}))=H(P)$. When we treat a double covering $\pi: \tilde{C} \longrightarrow C$ of a curve we assume that C and \tilde{C} are smooth curves.

We will study about the numerical semigroups H which are the Weierstrass semigroups of ramification points on double covers of smooth plane curves of degree d. In this article such a numerical semigroup H is said to be of double covering type of a plane curve of degree d, which is abbreviated to $D C P$ of degree d. We pose the following problem:

[^0]DCP Hurwitz' Problem. Let d be a positive integer. Then determine all the Weierstrass semigroups which are DCP of degree d.

To describe the known facts for DCP Hurwitz' Problem we use the notation $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ which means the additive monoid generated by a_{1}, \ldots, a_{s} for positive integers a_{1}, \ldots, a_{s}. If $d_{2}(H)$ is the Weierstrass semigroup of a point on a smooth plane curve of degree $d \leqq 3$, i.e., $d_{2}(H)=\mathbb{N}_{0}$ or $\langle 2,3\rangle$, then we can show that H is DCP (for example, see [6]). In the case $d=4$ the papers $[1],[2],[3]$ and [7] gave all the numerical semigroups of DCP of degree 4. In the recent monograph [5] the authors determine the numerical semigroups H which are DCP of degree 5 in the case where $g(H) \geqq 18$ and $d_{2}(H)=\langle 4,5\rangle$ or $\langle 4,7,10,13\rangle$.

Let C be a smooth plane curve and P its point. Let Z be a plane curve. We denote by $C . Z$ the intersection divisor of C with Z. Moreover, let $\operatorname{ord}_{P}(C . Z)$ be the multiplicity of $C . Z$ at P. We denote by T_{P} the tangent line at P on C. If P is a total flex on a smooth plane curve C of degree 6, i.e., $\operatorname{ord}_{P} C . T_{P}=6$, then $H(P)=\langle 5,6\rangle$. The following is the main result of this article:

Main Theorem. If H is a numerical semigroup of genus $\geqq 30$ with $d_{2}(H)=$ $\langle 5,6\rangle$, then it is DCP of degree 6.

2. Preliminary results

In this section we review some known facts which will be used in the proof of Main Theorem.

Let C be a smooth plane curve and P_{1}, \ldots, P_{n} points of C among which we permit the same points. For a positive integer m we denote by $C^{*}\left(m ; P_{1}, \ldots, P_{n}\right)$ the set of plane curves X of degree m such that $X . C \geqq P_{1}+\cdots+P_{n}$. We consider the set $C\left(m ; P_{1}, \ldots, P_{n}\right)=C^{*}\left(m ; P_{1}, \ldots, P_{n}\right) \cup\{0\}$ as a k-vector space. The points P_{1}, \ldots, P_{n} impose independent condition on the system of curves of degree m if

$$
\operatorname{dim} C\left(m ; P_{1}, \ldots, P_{n}\right)=\frac{(m+2)(m+1)}{2}-n
$$

The points P_{1}, \ldots, P_{n} fail to impose independent condition on the system of curves of degree m if

$$
\operatorname{dim} C\left(m ; P_{1}, \ldots, P_{n}\right)>\frac{(m+2)(m+1)}{2}-n .
$$

Lemma 2.1. i) 2 points impose independent condition on the system of lines.
ii) 3 points fail to impose independent condition on the system of lines if and only if the three points are collinear.
iii) 3 points impose independent condition on the system of conics.
iv) 4 points fail to impose independent condition on the system of conics if and only if the four points are collinear.
v) 5 points fail to impose independent condition on the system of conics if and only if there are four collinear points among them.
vi) 6 points fail to impose independent condition on the system of conics if and only if there are four collinear points among them or the six points are on a conic.
vii) 4 points impose independent condition on the system of cubics.
viii) 5 points fail to impose independent condition on the system of cubics if and only if the five points are collinear.
ix) 6 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them.
x) 7 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them.
xi) 8 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them or the eight points are on a conic.

Theorem 2.2 (Cayley-Bacharach). Let C be a non-singular plane curve. Let X_{1} and X_{2} be two plane curves of degree d and e resp., meeting in a collection Γ of de points of C with multiplicity. Let Y be a curve of degree $d+e-3$ such that the intersection Y.C contains all but one point of Γ. Then Y.C contains that remaining point also.

Theorem 2.2 of [7] is replaced by the following in our case. Indeed, to show that H is DCP we use this many times.

Theorem 2.3. Let (C, P) be a pointed non-singular plane curve of degree 6 and H a numerical semigroup with $d_{2}(H)=H(P)$ and $g(H) \geqq 30$. Set

$$
n=\min \{h \in H \mid h \text { is odd }\} .
$$

We note that

$$
g(H)=20+\frac{n-1}{2}-r
$$

with some non-negative integer r (for example, see Lemma 3.1 in [1]). Let Q_{1}, \ldots, Q_{r} be points of C different from P with $h^{0}\left(Q_{1}+\cdots+Q_{r}\right)=1$. Moreover, assume that H has an expression

$$
H=2 d_{2}(H)+\left\langle n, n+2 l_{1}, \ldots, n+2 l_{s}\right\rangle
$$

of generators with positive integers l_{1}, \ldots, l_{s} such that for any cubic C_{3} the inequality $C_{3} . C \geqq\left(l_{i}-1\right) P+Q_{1}+\cdots+Q_{r}$ implies that $C_{3} . C \geqq l_{i} P+Q_{1}+$ $\cdots+Q_{r}$, i.e.,

$$
h^{0}\left(K-\left(l_{i}-1\right) P-Q_{1}-\cdots-Q_{r}\right)=h^{0}\left(K-l_{i} P-Q_{1}-\cdots-Q_{r}\right),
$$

where K is a canonical divisor on C. Then the complete linear system $\mid n P-$ $2 Q_{1}-\cdots-2 Q_{r} \mid$ is base point free and there is a double covering $\pi: \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} over P satisfying $H(\tilde{P})=H$, i.e., H is $D C P$ of degree 6 .

3. Proof of Main Theorem

In this section, let H be a numerical semigroup with $g(H) \geqq 30, d_{2}(H)=H_{6}$ and $n \geqq 25$ where we set $H_{6}=\langle 5,6\rangle$ and $n=\min \{h \in H \mid h$ is odd $\}$. Let $r(H)$ be the number of the odd elements of H which are larger than n and less than or equal to $n+38$. We associate to H the diagram where \odot, \circ and \times indicate an integer in $M(H), H \backslash M(H)$ and $\mathbb{N}_{0} \backslash H$ respectively where $M(H)$ denotes the minimal set of generators for the monoid H. For example, we associate the following diagram with the numerical semigroup $H=2 H_{6}+\langle n, n+4, n+18\rangle$:

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \odot & \times & \times \\
(n) & \bullet & \circ & \circ & \odot \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Hence, we get $0 \leqq r(H) \leqq 10$. Moreover, we obtain $g(H)=20+\frac{n-1}{2}-r(H)$. Let $t(H)$ be the cardinality of the set

$$
\{u \in M(H) \mid u \text { is an odd integer distinct from } n\}
$$

The proof of Main Theorem is divided into forty two cases classified by the value of $t(H)$ and the generators which are odd.
(I) The case $t(H)=0$. Then $H=2 H_{6}+\langle n\rangle$, which is DCP by Proposition 2.3 in [4].
(II) The case $t(H)=1$. There are ten kinds of numerical semigroups.

II-1) $H=2 H_{6}+\langle n, n+38\rangle$. By (i) in Theorem 2.5 in [5] H is DCP.
II-2) $H=2 H_{6}+\langle n, n+28\rangle$. By (i) in Theorem 2.5 in [5] H is DCP.
II-3) $H=2 H_{6}+\langle n, n+26\rangle$. By (ii) in Theorem 2.5 in [5] H is DCP.
II-4) $H=2 H_{6}+\langle n, n+18\rangle$. By (i) in Theorem 2.5 in [5] H is DCP.
II-5) $H=2 H_{6}+\langle n, n+16\rangle$. By (iii) in Theorem 2.5 in [5] H is DCP.
II-6) $H=2 H_{6}+\langle n, n+14\rangle$. By (ii) in Theorem 2.5 in [5] H is DCP.
II-7) $H=2 H_{6}+\langle n, n+8\rangle$. By (i) in Theorem 2.5 in [5] H is DCP.
II-8) $H=2 H_{6}+\langle n, n+6\rangle$. We have the following diagram.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \odot & \times \\
(n) & \bullet & \times & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let C be a plane curve of degree 6 defined by an equation

$$
\left(y z^{2}-x^{3}\right)\left(\frac{1}{2} z^{3}+a x^{3}\right)+\left(y z^{2}+x^{3}-2 y^{3}\right)\left(\frac{1}{2} z^{3}+b y^{3}\right)=0
$$

that is to say,

$$
z^{3}\left(y z^{2}-y^{3}\right)+a x^{3}\left(y z^{2}-x^{3}\right)+b y^{3}\left(y z^{2}+x^{3}-2 y^{3}\right)=0
$$

where a and b are general constants. Then the curve C is non-singular. Let C_{31} and C_{32} be cubics defined by $y z^{2}-x^{3}=0$ and $y z^{2}+x^{3}-2 y^{3}=0$ respectively. The former one has only one singularity $(0: 1: 0)$ and it is irreducible. The latter one is non-singular. Let $P=(0: 0: 1) \in C$. Then $T_{P} . C=6 P$, where the tangent line T_{P} is defined by the equation $y=0$. Let ζ be a primitive 6 -th root of unity. For $i=1, \ldots, 6$ we set $Q_{i}=\left(\zeta^{i}: \zeta^{3 i}: 1\right) \in C$. Then we have

$$
C_{31} \cdot C_{32}=3 P+Q_{1}+\cdots+Q_{6} \text { and } C_{3 i} \cdot C \geqq 3 P+Q_{1}+\cdots+Q_{6} \text { for } i=1,2 .
$$

Since $C_{3 i}$'s are irreducible, any four points of P, Q_{1}, \ldots, Q_{6} are not collinear and the seven points P, Q_{1}, \ldots, Q_{6} are not on a conic. Hence, by Lemma 2.1 xi) we get

$$
h^{0}\left(K-2 P-Q_{1}-\cdots-Q_{6}\right)=10-8=2=h^{0}\left(K-3 P-Q_{1}-\cdots-Q_{6}\right)
$$

Hence, H is DCP by Theorem 2.3.
From now on, let us take a pointed curve (C, P) with $H(P)=H_{6}$ and distinct points Q_{1}, \ldots, Q_{r} of C with $r=r(H)$ different from P, which are defined in each item. We set $E_{r}=Q_{1}+\cdots+Q_{r}$.

II-9) $H=2 H_{6}+\langle n, n+4\rangle$. We have the following diagram.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \odot & \times & \times \\
(n) & \bullet & \circ & \circ & \times \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2} and $Q_{3}\left(\right.$ resp. Q_{4}, Q_{5} and $\left.Q_{6}\right)$. Let C_{3} be a cubic with $C_{3} . C \geqq P+Q_{1}+\cdots+Q_{6}$. Then we get $C_{3}=L_{1} L_{2} L$ with a line L which means that

$$
h^{0}\left(K-P-Q_{1}-\cdots-Q_{6}\right)=h^{0}\left(K-2 P-Q_{1}-\cdots-Q_{6}\right)=3 .
$$

Hence, H is DCP by Theorem 2.3.
II-10) $H=2 H_{6}+\langle n, n+2\rangle$. By (ii) in Theorem 2.5 in [5] H is DCP.
(III) The case $t(H)=2$. There are twenty kinds of numerical semigroups

III-1) $H=2 H_{6}+\langle n, n+26, n+28\rangle$. By (iv) in Theorem 2.5 in [5] H is DCP.

III-2) $H=2 H_{6}+\langle n, n+14, n+28\rangle$. By (iv) in Theorem 2.5 in [5] H is DCP.

III-3) $H=2 H_{6}+\langle n, n+2, n+28\rangle$. By (iv) in Theorem 2.5 in [5] H is DCP.
III-4) $H=2 H_{6}+\langle n, n+18, n+26\rangle$. By (v) in Theorem 2.5 in [5] H is DCP.
III-5) $H=2 H_{6}+\langle n, n+8, n+26\rangle$. By (v) in Theorem 2.5 in [5] H is DCP.

III-6) $H=2 H_{6}+\langle n, n+16, n+18\rangle$. By (vii) in Theorem 2.5 in [5] H is DCP.

III-7) $H=2 H_{6}+\langle n, n+14, n+18\rangle$. By (vi) in Theorem 2.5 in [5] H is DCP.

III-8) $H=2 H_{6}+\langle n, n+4, n+18\rangle$. See the beginning of this section for the diagram. Let us take distinct lines L_{1} and L_{2} through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}). Take a point Q_{7} of C which does not lie on $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the eight points P, Q_{1}, \ldots, Q_{7}. Then C_{3} should be a reduced curve $L_{1} L_{2} L$ with a line $L \ni Q_{7}$. In this case we get $C_{3} . C \geqq 2 P+E_{7}$. Hence, we get $h^{0}\left(K-P-E_{7}\right)=h^{0}\left(K-2 P-E_{7}\right)=2$. Moreover, we have $h^{0}\left(K-4 P-E_{7}\right)=0 . H$ is DCP by Theorem 2.3.

III-9) $H=2 H_{6}+\langle n, n+2, n+18\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\odot	\times	\times	\times
(n)	\bullet	\circ	\times	$\odot \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take lines L_{1} and L_{2} with $L_{1} \ni P$ and $L_{2} \not \supset P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Let C_{3} be a cubic through the seven points P, Q_{1}, \ldots, Q_{6}. Then C_{3} must be a curve $L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}$ and Q_{6}. Hence, by Lemma 2.1 iii) we get

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=6-2=4 .
$$

Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 8 P+E_{6}$. Then C_{3}^{\prime} must be a curve $L_{1} T_{P} L_{2}$ which implies that $C_{3}^{\prime} . C \nexists 8 P$. This is a contradiction. Hence, we obtain $h^{0}\left(K-8 P-E_{6}\right)=0$.

III-10) $H=2 H_{6}+\langle n, n+14, n+16\rangle$. By (viii) in Theorem 2.5 in [5] H is DCP.

III-11) $H=2 H_{6}+\langle n, n+8, n+16\rangle$.

Let us take distinct lines L_{1} and L_{2} not through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Let C_{3} be a cubic with $C \cdot C_{3} \geqq 3 P+Q_{1}+\cdots+Q_{6}$. Then C_{3} must
be the curve $L_{1} T_{P} L_{2}$, which implies that

$$
h^{0}\left(K-3 P-E_{6}\right)=\cdots=h^{0}\left(K-6 P-E_{6}\right)=1 \text { and } h^{0}\left(K-7 P-E_{6}\right)=0 .
$$

III-12) $H=2 H_{6}+\langle n, n+2, n+16\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \odot & \times & \times & \times \\
(n) & \bullet & \circ & \odot & \times \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}$. Hence, by Lemma 2.1 iii) we get

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=6-2=4 .
$$

Moreover, let $C_{3} . C \geqq 4 P+E_{6}$. Then we obtain $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-4 P-E_{6}\right)=h^{0}\left(K-8 P-E_{6}\right)=1 .
$$

III-13) $H=2 H_{6}+\langle n, n+8, n+14\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \times & \odot \\
(n) & \bullet & \odot & \times & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take lines L_{1} and L_{2} with $L_{1} \not \supset P$ and $L_{2} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Let C_{3} be a cubic through the seven points P, Q_{1}, \ldots, Q_{6}. Then $C_{3}=L_{1} L_{2} L$ with a line L, which means that

$$
h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-7 P-E_{9}\right)=1 .
$$

III-14) $H=2 H_{6}+\langle n, n+6, n+14\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \odot & \times \\
(n) & \bullet & \odot & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1}, L_{2} and L_{3} through P such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}, Q_{6} and Q_{7}). Let C_{3} be a cubic with $C_{3} . C \geqq 2 P+E_{7}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that
$h^{0}\left(K-2 P-E_{7}\right)=h^{0}\left(K-3 P-E_{7}\right)=1$ and $h^{0}\left(K-4 P-Q_{1}-\cdots-Q_{7}\right)=0$.
III-15) $H=2 H_{6}+\langle n, n+6, n+8\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \odot & \odot \\
(n) & \bullet & \times & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} not through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Let C_{3} be a cubic through the seven points Q_{1}, \ldots, Q_{7}. Then C_{3} must be the curve $L_{1} L_{2} L$ with a line L. If a cubic C_{3} satisfies $C_{3} . C \geqq 2 P+E_{7}$, then $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-2 P-E_{7}\right)=\cdots=h^{0}\left(K-6 P-E_{7}\right)=1
$$

III-16) $H=2 H_{6}+\langle n, n+4, n+8\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \odot & \times & \odot \\
(n) & \bullet & \circ & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1}, L_{2} and L_{3} with $L_{1} \not \supset P, L_{2} \ni P$ and $L_{3} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}, Q_{7} and Q_{8}). Let C_{3} be a cubic through the nine points P, Q_{1}, \ldots, Q_{8}. Then C_{3} is the curve $L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-2 P-E_{8}\right)=1 \text { and } h^{0}\left(K-3 P-E_{8}\right)=0
$$

III-17) $H=2 H_{6}+\langle n, n+2, n+8\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\odot	\times	\times	\odot
(n)	\bullet	\circ	\times	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1} and L_{2} with $L_{1} \not \supset P$ and $L_{2} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Let C_{3} be a cubic through the seven points Q_{1}, \ldots, Q_{7}. Then C_{3} must be a curve $L_{1} L_{2} L$ with a line L. Hence, we obtain

$$
\begin{aligned}
h^{0}\left(K-Q_{1}-\cdots-Q_{7}\right) & =h^{0}\left(K-P-Q_{1}-\cdots-Q_{7}\right)=3, \\
h^{0}\left(K-3 P-Q_{1}-\cdots-Q_{7}\right) & =h^{0}\left(K-7 P-Q_{1}-\cdots-Q_{7}\right)=1
\end{aligned}
$$

III-18) $H=2 H_{6}+\langle n, n+4, n+6\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \odot & \odot & \times \\
(n) & \bullet & \circ & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1}, L_{2} and L_{3} through P such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}, Q_{7} and $\left.Q_{8}\right)$. Let C_{3} be a cubic with $C_{3} \cdot C \geqq P+E_{8}$. Then we get $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-3 P-E_{8}\right)=1 .
$$

III-19) $H=2 H_{6}+\langle n, n+2, n+6\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \odot & \times & \odot & \times \\
(n) & \bullet & \circ & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1}, L_{2} and L_{3} through P such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}, Q_{7} and Q_{8}). Let C_{3} be a cubic with $C_{3} \cdot C \geqq E_{8}$. Then we get $C_{3}=L_{1} C_{2}$ with $C_{2} \ni Q_{5}, Q_{6}, Q_{7}, Q_{8}$, which means that

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=6-4=2
$$

from by Lemma 2.1 iv). Moreover, let $C_{3} . C \geqq 2 P+E_{8}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-2 P-E_{8}\right)=h^{0}\left(K-3 P-E_{8}\right)=1
$$

III-20) $H=2 H_{6}+\langle n, n+2, n+4\rangle$.

Let us take distinct lines L_{1} and L_{2} through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Let C_{3} be a cubic with $C_{3} \cdot C \geqq E_{7}$. Then we get $C_{3}=L_{1} L_{2} L$ with a line L, which means that

$$
h^{0}\left(K-E_{7}\right)=h^{0}\left(K-2 P-E_{7}\right)=3
$$

(IV) The case $t(H)=3$. There are ten kinds of numerical semigroups.

IV-1) $H=2 H_{6}+\langle n, n+14, n+16, n+18\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \times & \times \\
(n) & \bullet & \odot & \odot & \odot \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let Q_{1}, \ldots, Q_{6} be general six points of C. Since we have $h^{0}(K-6 P)=$ $h^{0}(12 P)=6$, we obtain $h^{0}\left(K-6 P-E_{6}\right)=0 . H$ is DCP by Theorem 2.3.

IV-2) $H=2 H_{6}+\langle n, n+2, n+16, n+18\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \odot & \times & \times & \times \\
(n) & \bullet & \circ & \odot & \odot \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} with $L_{1} \ni P$ and $L_{2} \not \supset P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Take a point Q_{7} of C which does not lie on $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the seven points Q_{1}, \ldots, Q_{7}. Then C_{3} must be the reduced curve $L_{1} C_{2}$, where C_{2} is a conic containing Q_{5}, Q_{6} and Q_{7}. Hence, by Lemma 2.1 iii) we obtain

$$
h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=6-3=3
$$

We get $h^{0}\left(K-8 P-E_{7}\right)=0$, because there are no cubics C_{3} such that $C_{3} . C \geqq$ $8 P+E_{7}$.

IV-3) $H=2 H_{6}+\langle n, n+2, n+4, n+18\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \odot & \odot & \times & \times \\
(n) & \bullet & \circ & \circ & \odot \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Take a point Q_{8} of C which does not lie on $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the eight points Q_{1}, \ldots, Q_{8}. Then C_{3} must be a curve $L_{1} L_{2} L$ with a line $L \ni Q_{8}$. Hence, we get

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-2 P-E_{8}\right)=2 \text { and } h^{0}\left(K-4 P-E_{8}\right)=0 .
$$

$$
\text { IV-4) } H=2 H_{6}+\langle n, n+8, n+14, n+16\rangle
$$

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\times	\times	\times	\odot
(n)	\bullet	\odot	\odot	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1} and L_{2} with $L_{1} \not \supset P$ and $L_{2} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}). Take a point Q_{7} of C which does not lie on $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the eight points P, Q_{1}, \ldots, Q_{7}. Then we get $C_{3}=L_{1} L_{2} L$ with $L \ni Q_{7}$, which implies that $h^{0}\left(K-3 P-E_{7}\right)=0$.

IV-5) $H=2 H_{6}+\langle n, n+2, n+8, n+16\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\odot	\times	\times	\odot
(n)	\bullet	\circ	\odot	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1} and L_{2} with $L_{1} \not \supset P$ and $L_{2} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Take a point Q_{8} of C which does not lie on $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the eight points Q_{1}, \ldots, Q_{8}. Then C_{3} must be a curve $L_{1} L_{2} L$ with a line $L \ni Q_{8}$. Hence, we get

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=2 \text { and } h^{0}\left(K-3 P-E_{8}\right)=0
$$

IV-6) $H=2 H_{6}+\langle n, n+6, n+8, n+14\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \times & \times & \odot & \odot \\
(n) & \bullet & \odot & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1} and L_{2} not through P such that the intersection of C and L_{1} (resp. L_{2}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}). Take a point Q_{8} of C not lying on the union $L_{1} \cup L_{2}$. Let C_{3} be a cubic through the eight points Q_{1}, \ldots, Q_{8}. Then C_{3} must be the curve $L_{1} L_{2} L$ with a line L containing Q_{8}, which implies that $h^{0}\left(K-2 P-Q_{1}-\cdots-Q_{8}\right)=0$.

IV-7) $H=2 H_{6}+\langle n, n+4, n+6, n+8\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\times	\odot	\odot	\odot
(n)	\bullet	\circ	\circ	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1}, L_{2} and L_{3} not through P such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}, Q_{8} and Q_{9}). Let C_{3} be a cubic through the nine points Q_{1}, \ldots, Q_{9}. Then $C_{3}=L_{1} L_{2} L_{3}$, which means that $h^{0}\left(K-P-E_{9}\right)=0$.

IV-8) $H=2 H_{6}+\langle n, n+2, n+6, n+8\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\odot	\times	\odot	\odot
(n)	\bullet	\circ	\circ	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1}, L_{2} and L_{3} with $L_{1} \not \supset P, L_{2} \not \ngtr P$ and $L_{3} \ni P$ such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}, Q_{8} and Q_{9}). Let C_{3} be a cubic through the nine points Q_{1}, \ldots, Q_{9}. Then C_{3} must be the curve $L_{1} L_{2} L_{3}$, which means that

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-P-E_{9}\right)=1 \text { and } h^{0}\left(K-2 P-E_{9}\right)=0 .
$$

IV-9) $H=2 H_{6}+\langle n, n+2, n+4, n+8\rangle$.

$$
\begin{array}{ccccl}
\rightarrow+2 & (n+2) & (n+4) & (n+6) & (n+8) \\
\bullet & \odot & \odot & \times & \odot \\
(n) & \bullet & \circ & \circ & \circ \downarrow+10 \\
\searrow+12 & (n+12) & \bullet & \circ & \circ \\
& & (n+24) & \bullet & \circ \\
& & & (n+36) & \bullet \\
& & & & (n+48)
\end{array}
$$

Let us take distinct lines L_{1}, L_{2} and L_{3} with $L_{1} \ni P, L_{2} \ni P$ and $L_{3} \not \ngtr P$ such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}, Q_{8} and Q_{9}). Let C_{3} be a cubic through the nine points Q_{1}, \ldots, Q_{9}. Then C_{3} must be the curve $L_{1} L_{2} L_{3}$. Hence, we obtain

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-2 P-E_{9}\right)=1 \text { and } h^{0}\left(K-3 P-E_{9}\right)=0
$$

IV-10) $H=2 H_{6}+\langle n, n+2, n+4, n+6\rangle$.

$\rightarrow+2$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$
\bullet	\odot	\odot	\odot	\times
(n)	\bullet	\circ	\circ	$\circ \downarrow+10$
$\searrow+12$	$(n+12)$	\bullet	\circ	\circ
		$(n+24)$	\bullet	\circ
			$(n+36)$	\bullet
				$(n+48)$

Let us take distinct lines L_{1}, L_{2} and L_{3} through P such that the intersection of C and L_{1} (resp. L_{2}, L_{3}) contains distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}, Q_{8} and Q_{9}). Let C_{3} be a cubic with $C_{3} . C \geqq E_{9}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-3 P-E_{9}\right)=1 .
$$

(V) The case $t(H)=4$. Then $H=2 H_{6}+\langle n, n+2, n+4, n+6, n+8\rangle$. By Corollary 2.8 in [4] H is DCP.

References

[1] T. Harui and J. Komeda, Numerical semigroups of genus eight and double coverings of curves of genus three, Semigroup Forum 89 (2014), no. 3, 571-581.
[2] , Numerical semigroups of genus seven and double coverings of curves of genus three, Semigroup Forum 90 (2015), no. 2, 491-502.
[3] \qquad , Numerical semigroups of genus six and double coverings of curves of genus three, Semigroup Forum 91 (2015), no. 3, 601-610.
[4] S. J. Kim and J. Komeda, Weierstrass semigroups on double covers of genus 4 curves, J. Algebra 405 (2014), 142-167.
[5] , Weierstrass semigroups on double covers of plane curves of degree 5, Kodai Math. J. 38 (2015), no. 2, 270-288.
[6] J. Komeda, A numerical semigroup from which the semigroup gained by dividing by two is either \mathbb{N}_{0} or a 2-semigroup or $\langle 3,4,5\rangle$, Research Reports of Kanagawa Institute of Technology B-33 (2009), 37-42.
[7] \qquad On Weierstrass semigroups of double coverings of genus three curves, Semigroup Forum 83 (2011), no. 3, 479-488.

Seon Jeong Kim
Department of Mathematics and RINS
Gyeongsang National University
Jinju 660-701, Korea
Email address: skim@gnu.ac.kr
Jiryo Komeda
Department of Mathematics
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology
Atsugi 243-0292, Japan
Email address: komeda@gen.kanagawa-it.ac.jp

[^0]: Received March 6, 2017; Revised July 1, 2017; Accepted January 12, 2018.
 2010 Mathematics Subject Classification. Primary 14H55, 14H50, 14H30, 20M14.
 Key words and phrases. numerical semigroup, Weierstrass semigroup of a point, double cover of a curve, plane curve of degree 6 .

 This work was financially supported by JPS KAKENHI Grant Numbers 15K04830 and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016R1D1A1B01011730).

