• 제목/요약/키워드: learning classification

검색결과 3,326건 처리시간 0.029초

Filter Method와 Classification 알고리즘을 이용한 전자상거래 블랙컨슈머 탐지에 대한 연구 (Black Consumer Detection in E-Commerce Using Filter Method and Classification Algorithms)

  • 이태규;이경호
    • 정보보호학회논문지
    • /
    • 제28권6호
    • /
    • pp.1499-1508
    • /
    • 2018
  • 빠른 속도로 성장하고 있는 전자상거래 시장이 기업들에게 고객층을 넓혀나갈 좋은 기회를 제공하고 있는 반면에 블랙컨슈머로 인한 기업들의 피해 사례 또한 늘어나고 있다. 본 연구는 전자상거래 고객 데이터를 통해 전자상거래상의 블랙컨슈머를 탐지해내는 머신 러닝 모델을 구축하고 최적화하는 것을 목표로 한다. Feature selection의 filter method와 4개의 classification 알고리즘을 이용한 실험을 통해 F-measure 0.667의 정확도로 블랙컨슈머를 탐지하는 모델을 구축하였으며 F-measure에서 11.44%, AURC에서 10.51%, TPR에서 22.87%의 성능 향상을 확인 할 수 있었다.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정 (Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning)

  • 쩐꾸억바오후이;박종현;정선태
    • 한국멀티미디어학회논문지
    • /
    • 제25권1호
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

An Improved Text Classification Method for Sentiment Classification

  • Wang, Guangxing;Shin, Seong Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2019
  • In recent years, sentiment analysis research has become popular. The research results of sentiment analysis have achieved remarkable results in practical applications, such as in Amazon's book recommendation system and the North American movie box office evaluation system. Analyzing big data based on user preferences and evaluations and recommending hot-selling books and hot-rated movies to users in a targeted manner greatly improve book sales and attendance rate in movies [1, 2]. However, traditional machine learning-based sentiment analysis methods such as the Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) had performed poorly in accuracy. In this paper, an improved kNN classification method is proposed. Through the improved method and normalizing of data, the purpose of improving accuracy is achieved. Subsequently, the three classification algorithms and the improved algorithm were compared based on experimental data. Experiments show that the improved method performs best in the kNN classification method, with an accuracy rate of 11.5% and a precision rate of 20.3%.

텍스트 분류 기법의 발전 (Enhancement of Text Classification Method)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.155-156
    • /
    • 2019
  • Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.

  • PDF

후두음성 질환에 대한 인공지능 연구 (Artificial Intelligence for Clinical Research in Voice Disease)

  • 석준걸;권택균
    • 대한후두음성언어의학회지
    • /
    • 제33권3호
    • /
    • pp.142-155
    • /
    • 2022
  • Diagnosis using voice is non-invasive and can be implemented through various voice recording devices; therefore, it can be used as a screening or diagnostic assistant tool for laryngeal voice disease to help clinicians. The development of artificial intelligence algorithms, such as machine learning, led by the latest deep learning technology, began with a binary classification that distinguishes normal and pathological voices; consequently, it has contributed in improving the accuracy of multi-classification to classify various types of pathological voices. However, no conclusions that can be applied in the clinical field have yet been achieved. Most studies on pathological speech classification using speech have used the continuous short vowel /ah/, which is relatively easier than using continuous or running speech. However, continuous speech has the potential to derive more accurate results as additional information can be obtained from the change in the voice signal over time. In this review, explanations of terms related to artificial intelligence research, and the latest trends in machine learning and deep learning algorithms are reviewed; furthermore, the latest research results and limitations are introduced to provide future directions for researchers.

새로운 패션 의류 이미지 분류 (New Fashion Clothing Image Classification)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.555-556
    • /
    • 2021
  • 우리는 패션 의류 이미지의 빠르고 정확한 분류를 달성하기 위해 최적화된 동적 붕괴 학습률과 개선된 모델 구조를 가진 딥 러닝 모델을 기반으로 하는 새로운 방법을 제안한다.

  • PDF

PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화 (Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification)

  • 이상협;강도영;송종관;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.

개선된 데이터마이닝을 위한 혼합 학습구조의 제시 (Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management)

  • Kim, Steven H.;Shin, Sung-Woo
    • 정보기술응용연구
    • /
    • 제1권
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF