International Journal of Internet, Broadcasting and Communication
/
제12권1호
/
pp.144-150
/
2020
Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.
In this paper, we present an associative memory network (AMN) controller for dynamic robot control. The purpose of using AMN is to reduce the size of required memory in storing and recalling large of daa representing input relationship of nonlinear functions. With the capability AMN can be used to dynamic robot control, which has nonlinear properties inherently. The proposed AMN control scheme has advantages for the inverse dynamics learning no limitatiion of inpur range, and insensitive of payload change. Computer simulations show the effectiveness and feasibility of proposed scheme.
Objectives : ${\beta}$-Asarone (BAS) is an active ingredient in Acori Rhizoma. This study investigated anti-neuroinflammatory and memory ameliorating effects of BAS in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : BAS was administered orally at doses of 7.5, 15, and 30 mg/kg for 3 days prior to LPS (3 mg/kg, intraperitoneal) injection. Pro-inflammatory cytokine mRNA, including tumor necrosis factor-${\alpha}$ (TNF-ㅍ), interleukin (IL)-$1{\beta}$ and IL-6, was measured in hippocampus tissue using real-time polymerase chain reaction at 4 h after the LPS injection. An ameliorating effect of 30 mg/kg BAS on learning and memory impairment in the LPS-treated mice was verified using the Morris water maze test. Results : BAS significantly attenuated up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 mRNA in hippocampus tissue of the LPS-treated mice. In acquisition training test, BAS improved learning performance of the LPS-treated mice with a significant decrease of escape latency to the platform. In memory retention test, BAS also ameliorated memory impairment of the LPS-treated mice with a significant increase of swimming time in zones neighboring to the platform, number of target heading, and memory score. Conclusion : The results suggest that inhibition of pro-inflammatory cytokines and neuroinflammation in the hippocampus by BAS could be one of the mechanisms for BAS-mediated ameliorating effect on learning and memory impairment in LPS-treated mice.
이 연구는 가상현실 에이전트 외국어 강사를 활용한 외국어 학습 효과를 검증하는 것을 목표로 한다. 외국어 학습맥락을 고려해 가상현실 에이전트를 원어민과 비원어민으로 구분해 이를 실험자 간 요인으로, 에이전트의 역할은 교사와 판매원으로 나누어 실험자 내 요인으로 설정한 후, 몰입형 가상환경 콘텐츠를 직접 개발하고, 2×2 혼합요인설계를 하여 실험을 진행했다. 자발적으로 참여한 72명의 대학생을 대상으로 실험을 한 결과, 학습만족감, 기억, 회상에서 에이전트의 원어민 여부와 역할간 상호작용 효과가 통계적으로 유의미하게 나타났으나, 학습자신감, 프레즌스는 상호작용 효과와 주효과 모두에서 유의미한 차이를 보이지 않았다. 가상환경에서의 맥락적 학습이 학습 효과와 만족감을 증진한다는 결과와 에이전트의 역할이 학습자의 기억에 영향력을 미친다는 결과는 가상현실 에이전트 외국어 강사를 활용한 외국어 학습 효과의 유효성을 증명한 것으로, 가상현실 에이전트를 활용한 다양한 처치 결과가 학습자의 인지 및 정서적 반응에 긍정적 효과를 줄 수 있다는 중요한 이론적, 실증적 함의를 제공한다.
본 논문은 뉴로제어 및 반복학습 제어기법에 기반한 미지의 비선형시스템의 적응학습제어 방법을 제안한다. 제안된 제어 시스템에서 반복학습제어기는 새로운 기준 궤적에 대해 시스템의 출력이 원하는 궤적으로 정확히 수렴하도록 하는 적응과 단기간 제어정보를 기억하는 기능을 수행한다. 상대차수만 알고 있는 미지 시스템에 대한 박복학습 법칙이 학습이득은 신경회로망을 이용하여 추정된다. 반복학습제어기에 의해 습득된 제어정보는 장기메모리에 기반한 앞먹임 뉴로제어기로 이전되어 누적기억됨으로써 과거에 겸험된 기준 궤적에 대해서는 신속하게 추종할 수 있도록 한다. 2자유도 매니퓰레이터에 적용하여 제안된 기법의 타당성을 검증한다.
Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.
스테로이드 호르몬의 일종인 에스트로젠은 생식기능에 영향을 미치는 것 외에 학습 및 기억과 관련된 기능에도 영향을 미치는 것으로 알려져 있다. 최근, 에스트로젠은 기억과 관련된 뇌세포 신 경망의 발달과 뇌 기능 장애를 방지할 수 있다는 부분에서 상당한 관심의 대상이되고 있다. 그러나 에스트로젠 대체 치료가 폐경기의 많은 여성들에게 도움을 주기도 하지만 여러 부작용을 유발하는 것으로도 알려져 있다 인삼 역시도 스테로이드 특성을 보이며 에스트로젠과 유사한 화학구조를 가지는 여러 성분을 가지고 있다. 본 실험의 목적은 첫째로 공간 기억력을 측정하기에 여러 장점을 가지고 있으면서 다른 어떠한 행동학적 실험보다 학습과 기억의 동물 모텔로 잘 알려진 방법인 Morris water maze를 이용하여 에스트로젠의 효과를 확인하고, 두 번째는 인삼이 학습과 기억에서 에스트로젠과 같은 효과를 나타낼 수 있는지를 확인하는 것이다. 본 실험은 인위적으로 난소를 제거한 쥐에 17$\beta$-estradiol(100~250 $\mu\textrm{g}$/ml), panaxadiol(PD), panaxatriol(PT) sapo-nins(15~100 $\mu\textrm{g}$/ml)을 sesame oil에 녹인 capsule을 implant했다. 첫 번째 실험에서 난소를 제거한 쥐에 에스트로젠을 투입했을때 학습과 기억의 효과를 확인했다. 두 번째 실험에서는 난소를 제거한 쥐에 3가지 다른 농도에서의 PD, PT를 투입했을 때 학습과 기억에 대한 에스트로젠의 효과와 비교해 보았다. 2주 동안의implant 후 water maze 실험결과 세 그룹 모두 난소를 제거한 그룹보다 기억력이 향상되었다 이러한 결과를 토대로 에스트로젠이 학습과 기억에 영향을 준다는 것을 확인할 수 있었고 PD, PT 또한 학습과 기억에 관련된 행동에서 에스트로젠과 같은 효과를 나타낼 수 있다는 것을 확인할 수 있었다. 이러한 동물모델에서의 연구를 통하여 인삼이 에스트로젠 장기결핍치료에서 나타나는 여러 호르몬 부작용을 극복할 수 있는 에스트로젠 대체물질로 개발되어 기억력 저하를 수반하는 Alzheimer's disease 및 여러 퇴행성 중추신경 질환의 치료제로 대체의학의 natural compound이용에 그 기초 기전을 제공할 수 있으리라 여긴다.
본 논문에서는 비전 패턴인식 알고리즘인 시공간적 계층 메모리 학습 알고리즘을 이용한 새로운 근전도 패턴인식 방법을 제시한다. 효율적인 근전도 신호의 학습과 분류를 위하여 단순화된 2 레벨의 공간적 집합, 시간적 집합, 그리고 관리 맵퍼를 이용한 수정된 시공간적 계층 메모리 학습 알고리즘을 제안한다. 인식 성능을 향상시키기 위해서 관리 맵퍼 학습뿐만 아니라 시간적 집합 학습에도 카테고리 정보를 사용한다. 실험을 통하여 열 가지 손동작이 성공적으로 인식됨을 검증한다.
At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.
Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.