Browse > Article
http://dx.doi.org/10.4062/biomolther.2008.16.4.320

Activation of Adenosine A2A Receptor Impairs Memory Acquisition but not Consolidation or Retrieval Phases  

Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Ryu, Jong-Hoon (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.16, no.4, 2008 , pp. 320-327 More about this Journal
Abstract
Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.
Keywords
CV-1808; Adenosine $A_{2A}$ receptor; Acquisition; Consolidation; Retrieval;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Nehlig, A., Daval, J. L. and Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 17, 139-170   DOI   ScienceOn
2 Wirkner, K., Gerevich, Z., Krause, T., Guenther, A., Koeles, L., Schneider, D., Noerenberg, W. and Illes, P. (2004). Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46, 994-1007   DOI   ScienceOn
3 Satoh, S., Matsumura, H., Koike, N., Tokunaga, Y., Maeda, T. and Hayaishi, O. (1999). Region-dependent difference in the sleep-promoting potency of an adenosine $A_{2A}$ receptor agonist. Eur. J. Neurosci. 11, 1587-1597   DOI   ScienceOn
4 Fredholm, B. B., Lindstrom, K. and Wallman-Johansson, A. (1994). Propentofylline and other adenosine transport inhibitors increase the efflux of adenosine following electrical or metabolic stimulation of rat hippocampal slices. J. Neurochem. 62, 563-573   DOI
5 Winsky, L. and Harvey, J. A. (1986). Retardation of associative learning in the rabbit by an adenosine analog as measured by classical conditioning of the nictitating membrane response. J. Neurosci. 6, 2684-2690
6 Ahlijanian, M. K. and Takemori, A. E. (1985). Effects of (-)-N6-(R-phenylisopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur. J. Pharmacol. 112, 171-179   DOI   ScienceOn
7 Dunwiddie, T. V. and Masino, S. A. (2001). The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31-55   DOI   ScienceOn
8 Gimenez-Llort, L., Schiffmann, S. N., Shmidt, T., Canela, L., Camon, L., Wassholm, M., Canals, M., Terasmaa, A., Fernandez-Teruel, A., Tobena, A., Popova, E., Ferre, S., Agnati, L., Ciruela, F., Martinez, E., Scheel-Kruger, J., Lluis, C., Franco, R., Fuxe, K. and Bader, M. (2007). Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol. Learn. Mem. 87, 42-56   DOI   ScienceOn
9 Barros, D. M., Izquierdo, L. A., Mello e Souza, T., Ardenghi, P. G., Pereira, P., Medina, J. H. and Izquierdo, I. (2000). Molecular signalling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behav. Brain Res. 114, 183-192   DOI   ScienceOn
10 Cormier, R. J., Mennerick, S., Melbostad, H. and Zorumski, C. F. (2001). Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia 33, 24-35   DOI   ScienceOn
11 Kanda, T., Tashiro, T., Kuwana, Y. and Jenner, P. (1998). Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 9, 2857-2860   DOI   ScienceOn
12 Pereira, G. S., Rossato, J. I., Sarkis, J. J., Cammarota, M., Bonan, C. D. and Izquierdo, I. (2005). Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiol. Learn. Mem. 83, 217-223   DOI   ScienceOn
13 Mihara, T., Mihara, K., Yarimizu, J., Mitani, Y., Matsuda, R., Yamamoto, H., Aoki, S., Akahane, A., Iwashita, A. and Matsuoka, N. (2007). Pharmacological characterization of a novel, potent adenosine $A_1$ and $A_{2A}$ receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition. J. Pharmacol. Exp. Ther. 323, 708-719   DOI   ScienceOn
14 Lopes, L. V., Cunha, R. A., Kull, B., Fredholm, B. B. and Ribeiro, J. A. (2002). Adenosine $A_{2A}$ receptor facilitation of hippocampal synaptic transmission is dependent on tonic $A_1$ receptor inhibition. Neuroscience 112, 319-329   DOI   ScienceOn
15 Normile, H. J., Gaston, S., Johnson, G. and Barraco, R. A. (1994). Activation of adenosine $A_1$ receptors in the nucleus accumbens impairs inhibitory avoidance memory. Behav. Neural. Biol. 62, 163-166   DOI   ScienceOn
16 Rajji, T., Chapman, D., Eichenbaum, H. and Greene, R. (2006). The role of CA3 hippocampal NMDA receptors in paired associate learning. J. Neurosci. 26, 908-915   DOI   ScienceOn
17 Scammell, T. E., Gerashchenko, D. Y., Mochizuki, T., McCarthy, M. T., Estabrooke, I. V., Sears, C. A., Saper, C. B., Urade, Y. and Hayaishi, O. (2001). An adenosine A2A agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107, 653-663   DOI   ScienceOn
18 Von Lubitz, D. K., Paul, I. A., Bartus, R. T. and Jacobson, K. A. (1993). Effects of chronic administration of adenosine A1 receptor agonist and antagonist on spatial learning and memory. Eur. J. Pharmacol. 249, 271-280   DOI
19 Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J. and Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787-4795   DOI   ScienceOn
20 Rebola, N., Lujan, R., Cunha, R. A. and Mulle, C. (2008). Adenosine $A_2A$ receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121-134   DOI   ScienceOn
21 Takahashi, R. N., Pamplona, F. A. and Prediger, R. D. (2008). Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front. Biosci. 13, 2614-2632   DOI
22 Wang, J. H., Ma, Y. Y. and van den Buuse, M. (2006). Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp. Neurol. 199, 438-445   DOI   ScienceOn
23 Barraco, R. A., Coffin, V. L., Altman, H. J. and Phillis, J. W. (1983). Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res. 272, 392-395   DOI   ScienceOn
24 Abel, T. and Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180-187   DOI   ScienceOn
25 Angelucci, M. E., Cesario, C., Hiroi, R. H., Rosalen, P. L. and Da Cunha, C. (2002). Effects of caffeine on learning and memory in rats tested in the Morris water maze. Braz. J. Med. Biol. Res. 35, 1201-1208   DOI
26 Angelucci, M. E., Vital, M. A., Cesario, C., Zadusky, C. R., Rosalen, P. L. and Da Cunha, C. (1999). The effect of caffeine in animal models of learning and memory. Eur. J. Pharmacol. 373, 135-140   DOI   ScienceOn
27 Barros, D. M., Izquierdo, L. A., Medina, J. H. and Izquierdo, I. (2003). Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr. Drug Targets CNS Neurol. Disord. 2, 81-94   DOI
28 Bekinschtein, P., Cammarota, M., Igaz, L. M., Bevilaqua, L. R., Izquierdo, I. and Medina, J. H. (2007). Persistence of longterm memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53, 261-277   DOI   ScienceOn
29 Diogenes, M. J., Fernandes, C. C., Sebastiao, A. M. and Ribeiro, J. A. (2004). Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J. Neurosci. 24, 2905-2913   DOI   ScienceOn
30 Collinson, N., Atack, J. R., Laughton, P., Dawson, G. R. and-Stephens, D. N. (2006). An inverse agonist selective for .·5 subunit-containing GABAA receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl) 188, 619-628   DOI
31 Dragunow, M. (1988). Purinergic mechanisms in epilepsy. Prog. Neurobiol. 31, 85-108   DOI   ScienceOn
32 Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. and Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-269   DOI   ScienceOn
33 Ernens, I., Rouy, D., Velot, E., Devaux, Y. and Wagner, D. R. (2006). Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils: implication of $A_{2A}$ receptor and cAMP/PKA/$Ca^{2+}$ pathway. Circ. Res. 99, 590-597   DOI   ScienceOn
34 Ferre, S., Diamond, I., Goldberg, S. R., Yao, L., Hourani, S. M., Huang, Z. L., Urade, Y. and Kitchen, I. (2007). Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog. Neurobiol. 83, 332-347   DOI   ScienceOn
35 Hong, Z. Y., Huang, Z. L., Qu, W. M., Eguchi, N., Urade, Y. and Hayaishi, O. (2005). An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J. Neurochem. 92, 1542-1549   DOI   ScienceOn
36 Fredholm, B. B., Chen, J. F., Masino, S. A. and Vaugeois, J. M. (2005). Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385-412   DOI   ScienceOn
37 Gerashchenko, D., Okano, Y., Urade, Y., Inoué, S. and Hayaishi, O. (2000). Strong rebound of wakefulness follows prostaglandin $D_{2-}$ or adenosine $A_{2A}$ receptor agonist-induced sleep. J. Sleep Res. 9, 81-87   DOI   ScienceOn
38 Hauber, W. and Bareiss, A. (2001). Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference memory retention during the light period. Behav. Brain Res. 118, 43-52   DOI   ScienceOn
39 Izquierdo, L. A., Viola, H., Barros, D. M., Alonso, M., Vianna, M. R., Furman, M., Levi de Stein, M., Szapiro, G., Rodrigues, C., Choi, H., Medina, J. H. and Izquierdo, I. (2001). Novelty enhances retrieval: molecular mechanisms involved in rat hippocampus. Eur. J. Neurosci. 13, 1464-1467   DOI   ScienceOn
40 Kishimoto, Y., Nakazawa, K., Tonegawa, S., Kirino, Y. and Kano, M. (2006). Hippocampal CA3 NMDA receptors are crucial for adaptive timing of trace eyeblink conditioned response. J. Neurosci. 26, 1562-1570   DOI   ScienceOn
41 Mingote, S., Pereira, M., Farrar, A. M., McLaughlin, P. J. and Salamone, J. D. (2008). Systemic administration of the adenosine $A_{2A}$ agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacol. Biochem. Behav. 89, 345-351   DOI   ScienceOn
42 Koga, K., Kurokawa, M., Ochi, M., Nakamura, J. and Kuwana, Y. (2000). Adenosine A2A receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur. J. Pharmacol. 408, 249-255   DOI   ScienceOn
43 Kopf, S. R., Melani, A., Pedata, F. and Pepeu, G. (1999). Adenosine and memory storage: effect of A1 and $A_2$ receptor antagonists. Psychopharmacology (Berl) 146, 214-219   DOI
44 Martin, G. E., Rossi, D. J. and Jarvis, M. F. (1993). Adenosine agonists reduce conditioned avoidance responding in the rat. Pharmacol. Biochem. Behav. 45, 951-958   DOI   ScienceOn
45 Nader, K. (2003). Neuroscience: re-recording human memories. Nature 425, 571-572   DOI   ScienceOn
46 Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., Kato, A., Carr, C. A., Johnston, D., Wilson, M. A. and Tonegawa, S. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211-218   DOI   ScienceOn
47 Ohno, M. and Watanabe, S. (1996). Working memory failure by stimulation of hippocampal adenosine A1 receptors in rats. Neuroreport 7, 3013-3016   DOI   ScienceOn
48 Prickaerts, J., Sik, A., van der Staay, F. J., de Vente, J. and Blokland, A. (2005). Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177, 381-390   DOI   ScienceOn
49 Pereira, G. S., Mello, E., Souza, T., Vinadé, E. R., Choi, H., Rodrigues, C., Battastini, A. M., Izquierdo, I., Sarkis, J. J. and Bonan, C. D. (2002). Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats. Eur. J. Pharmacol. 437, 151-154   DOI   ScienceOn
50 Post, C. (1984). Antinociceptive effects in mice after intrathecal injection of 5'-N-ethylcarboxamide adenosine. Neurosci. Lett. 51, 325-330   DOI   ScienceOn
51 Rebola, N., Canas, P. M., Oliveira, C. R. and Cunha, R. A. (2005). Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132, 893-903   DOI   ScienceOn
52 Satoh, S., Matsumura, H. and Hayaishi, O. (1998). Involvement of adenosine $A_{2A}$ receptor in sleep promotion. Eur. J. Pharmacol. 351, 155-162   DOI   ScienceOn
53 Normile, H. J. and Barraco, R. A. (1991). N6-cyclopentyladenosine impairs passive avoidance retention by selective action at $A_14 receptors. Brain Res. Bull. 27, 101-104   DOI   ScienceOn
54 Ou, L. C. and Gean, P. W. (2006). Regulation of amygdaladependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase. Neuropsychopharmacology 31, 287-296   DOI   ScienceOn
55 Spealman, R. D. and Coffin, V. L. (1986). Behavioral effects of adenosine analogs in squirrel monkeys: relation to adenosine A2 receptors. Psychopharmacology (Berl) 90, 419-421   DOI
56 Satoh, S., Matsumura, H., Suzuki, F. and Hayaishi, O. (1996). Promotion of sleep mediated by the $A_2A$ -adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc. Natl. Acad. Sci. USA. 93, 5980-5984   DOI   ScienceOn
57 Shiozaki, S., Ichikawa, S., Nakamura, J., Kitamura, S., Yamada, K. and Kuwana, Y. (1999). Actions of adenosine $A_{2A}$ receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 147, 90-95   DOI
58 Silva, A. J. and Giese, K. P. (1994). Plastic genes are in! Curr. Opin. Neurobiol. 4, 413-420   DOI   ScienceOn
59 Suzuki, F., Shimada, J., Shiozaki, S., Ichikawa, S., Ishii, A., Nakamura, J., Nonaka, H., Kobayashi, H. and Fuse, E. (1993). Adenosine A1 antagonists. 3. Structure-activity relationships on amelioration against scopolamine- or N6-((R)-phenylisopropyl)adenosine-induced cognitive disturbance. J. Med. Chem. 36, 2508-2518   DOI   ScienceOn
60 Tebano, M. T., Martire, A., Rebola, N., Pepponi, R., Domenici, M. R., Gro, M. C., Schwarzschild, M. A., Chen, J. F., Cunha, R. A. and Popoli, P. (2005). Adenosine $A_{2A}$ receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J. Neurochem. 95, 1188-1200   DOI   ScienceOn