Objectives : The purpose of this study was to characterize the effect of the Ethanolic extract of Stachys sieboldii and Lycopus lucidus on the learning and memory impairments induced by scopolamine. Methods : The genetic difference of Stachys sieboldii and Lycopus lucidus were observed with RAPD analysis. The cognition-enhancing effect of Stachys sieboldii and Lycopus lucidus was investigated using a passive avoidance test, Y-maze test and the Morris water maze test in mice. Drug-induced amnesia was induced by treating animals with scopolamine (1 mg/kg, i.p.). Results : As a result of RAPD analysis, Stachys sieboldii and Lycopus lucidus Radix was found to be genetically different and The results of learning memory analysis showed that Stachys sieboldii extract-treated group (500 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Passive avoidance Y-maze test and Water maze test. And these results are same manner in DPPH radical scavenger effect and Acetylcholineseterase inhibition effect. These results suggest that Stachys sieboldii extract maybe a useful cognitive impairment treatment, and its beneficial effects are depending on the origin plants. Conclusions : Commercially available Stachys sieboldii Radix consists of two original plant, one of them people misuse. To clarify the origin of the plant Memory tests were performed. These results suggest that 80% Ethanol extract of Stachys sieboldii showed significant anti-amnestic and cognitive-enhancing activities related to the memory processes, and these activities were parallel to treatment duration and dependent of the learning models.
Kim, Joong-Sun;Yang, Mi-Young;Son, Yeong-Hoon;Kim, Sung-Ho;Kim, Jong-Choon;Kim, Seung-Joon;Lee, Yong-Duk;Shin, Tae-Kyun;Moon, Chang-Jong
Toxicological Research
/
v.24
no.3
/
pp.183-188
/
2008
The behavioral phenotypes of out-bred ICR mice were compared with those of in-bred C57BL/6 and BALB/c mice. In particular, this study examined the locomotor activity and two forms of hippocampus-dependent learning paradigms, passive avoidance and object recognition memory. The basal open-field activity of the ICR strain was greater than that of the C57BL/6 and BALB/c strains. In the passive avoidance task, all the mice showed a significant increase in the cross-over latency when tested 24 hours after training. The strength of memory retention in the ICR mice was relatively weak and measurable, as indicated by the shorter cross-over latency than the C57BL/6 and BALB/c mice. In the object recognition memory test, all strains had a significant preference for the novel object during testing. The index for the preference of a novel object was lower for the ICR and BALB/c mice. Nevertheless, the variance and the standard deviation in these strains were comparable. Overall, these results confirm the strain differences on locomotor activity and hippocampus-dependent learning and memory in mice.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.90-94
/
2020
Artificial intelligence (AI) is software that learns large amounts of data and provides the desired results for certain patterns. In other words, learning a large amount of data is very important, and the role of memory in terms of computing systems is important. Massive data means wider bandwidth, and the design of the memory system that can provide it becomes even more important. Providing wide bandwidth in AI systems is also related to power consumption. AlphaGo, for example, consumes 170 kW of power using 1202 CPUs and 176 GPUs. Since more than 50% of the consumption of memory is usually used by system chips, a lot of investment is being made in memory technology for AI chips. MRAM, PRAM, ReRAM and Hybrid RAM are mainly studied. This study presents various memory technologies that are being studied in artificial intelligence chip design. Especially, MRAM and PRAM are commerciallized for the next generation memory. They have two significant advantages that are ultra low power consumption and nearly zero leakage power. This paper describes a comparative analysis of the four representative new memory technologies.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.4
s.310
/
pp.37-45
/
2006
In this paper, we propose the development of MHLA(Modulatory Hippocampus Learning Algorithm) which remodel a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 3 steps system(DG, CA3, CAl) and improve speed of learning by addition of modulator to long-term memory learning. In hippocampal system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labelled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CAI region, convergence of connection weight which is used long-term memory is learned fast by neural networks which is applied modulator. To measure performance of MHLA, PCA(Principal Component Analysis) is applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by MHLA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.
Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.
Although enzyme-hydrolyzed silk fibroin has been reported to enhance cognitive function before, it has been still unknown which peptides can improve memory. Here we report that amino acid sequences of three novel peptides were identified from fibroin hydrolysate. Fibroin hydrolysate was obtained by hydrolysis with protease after partial hydrolysis with 5M $CaCl_2$. Synthesized peptides derived from these sequences improved scopolamine-induced memory impairments in mice. We confirmed this hydrolysate had effects that improved learning and memory abilities by performing the Rey-Kim test. From this hydrolysate of silk fibroin, amino acid sequences of eight peptides were identified by LC-MS/MS. Three peptides (GAGAGTGSSGFGPY, GAGAGSGAGSGAGAGSGAGAGY, and SGAGSGAGAGSGAGAGSGA) were synthesized to investigate whether they could improve memory. Passive avoidance test and Morris water maze test were performed, and all peptides showed memory-enhancing abilities on scopolamine-induced memory impairments in mice. In this study, we identified three novel peptides that could improve memory, and that silk fibroin hydrolysate was a mixture of various active peptides that could enhance memory.
We investigated the effect low salt (2 or 4% salt) concentrations jeotgal made from Todarodes pacificus on the learning and memory impairments in scopolamine-induced (2 mg/kg, i.p.) dementia rats. Rats treated with oral BF-7 (200 mg/kg, p.o.) as a positive control and Todarodes pacificus jeotgal had significantly reduced scopolamine-induced memory deficits in the passive avoidance test. The Morris water maze test or treatment with 2% salt jeotgal made from Todarodes pacificus significantly ameliorated the scopolamine-induced memory deficits in the formation of long- and short-term memory. The acetylcholine content and acetylcholinesterase acitivity paralleled the results of the behavior experiment. There were no significant differences in the brain acetylcholine contents of the experimental groups, while the brain acetylcholine content of the group treated with 2% salt Todarodes pacificus jeotgal was higher than that of the control group. The inhibitory effect of 2% salt jeotgal made from Todarodes pacificus on the acetylcholinesterase activity in the brain was lower than that of the control group. These trends were similar to those of the gamma-aminobutyric acid content. We suggest that Todarodes pacificus jeotgal enhances learning memory and cognitive function by regulating cholinergic enzymes.
A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.
The essential requirements of neural network for human skill transfer are fast convergence, high storage capacity, and strong noise immunity. Bidirectional associative memory(BAM) suffering from low storage capacity and abundance of spurious memories is rarely used for skill transfer application though it has fast and wide association characteristics for visual data. This paper suggests generalization of classical BAM structure and new learning algorithm which uses supervised learning to guarantee perfect recall starting with correlation matrix. The generalization is validated to accelerate convergence speed, to increase storage capacity, to lessen spurious memories, to enhance noise immunity, and to enable multiple association using simulation work.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.11
/
pp.4246-4267
/
2020
As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.