• Title/Summary/Keyword: leakage detection

Search Result 458, Processing Time 0.028 seconds

Thruster Fault Detection of the Launch Vehicle Upper Stage Attitude Control System (발사체 상단 자세제어 시스템의 추력기 고장 검출)

  • Lee, Soo-Jin;Kwon, Hyuk-Hoon;Hwang, Tae-Won;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.72-79
    • /
    • 2004
  • A method for thruster fault diagnosis for launch vehicle upper stage was developed. In order to protect the launch vehicle against the occurrence of faults, it is necessary to detect and identify the fault, as well as to reconfigure the controller of the vehicle. Considering the upper stage launch vehicle using reaction control system, an analytical method was adopted in order to detect the fault occurred in thruster. The fault detection scheme can be applied to the system regardless of the form of thruster fault occurred - leakage or lock-out. Results from processor-in-the-loop simulation are provided to demonstrate the validity of this fault detection and isolation scheme for the upper stage launch vehicle.

A Study on Measurement Technique of Insulation Resistance for Non-interrupting Inspection Using Non-contact Voltage Phase Detection Technology (비접촉 전압위상 검출 기술을 이용한 무정전 절연저항 측정 방법에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bae;Choi, Dong-Hwan;Kim, Yong-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1106-1112
    • /
    • 2018
  • In this paper, measurement techniques are presented to test the performance of insulation without interruption if it is difficult to measure insulation resistance. Especially, non-contact voltage phase detection techniques have been developed that can be applied in environments where it is difficult to find voltage measurement locations such as component receptors. The performance verification of the non-interrupting insulation resistance measuring devices has been tested against existing products using standard calibration equipment and test jigs. The validation confirmed performance within 2 % for direct contact type and within 10 % for non-contact type. In addition, the procedure to make continuous insulation test using the equipment was proposed.

Study on the Fugitive Emissions of a PFA Lined Ball Valve through Helium Leak Detection (PFA 라이닝 볼밸브의 헬륨누설 검출 및 비산배출에 관한 연구)

  • Lee, Won-Ho;Kim, Dong-Yeol;Lee, Jong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.39-42
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used to the chemical/pharmaceutical industries, the semiconductor/LCD manufacturing processes, etc. with the high purity chemicals as working fluid. EPA stated that 60% of all fugitive emissions come from the valve stem packing in a typical petroleum or chemical processing plant. They monitor regulated components for leaks and maintain seal performance at acceptable levels. Korean industrial standards only deals with the bubble test for in-line leakage of valves, which has the detectable leak rate of $10^{-4}$ [$mbar{\cdot}L{\cdot}s^{-1}$], therefore, it is not sufficient to check fugitive emissions. In this study, we conducted Helium leak detection from a PFA lined ball valve and evaluated fugitive emissions according to ISO 15848-1, which has the detectable leak rate of $10^{-9}$ [$mbar{\cdot}L{\cdot}s^{-1}$], for manufacturing the high-reliable PFA lined ball valves against fugitive emissions.

Use of Support Vector Machines for Defect Detection of Metal Bellows Welding (금속 벨로우즈 용접의 결점 탐지를 위한 서포터 벡터 머신의 이용)

  • Park, Min-Chul;Byun, Young-Tae;Kim, Dong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • Typically welded bellows are checked with human eye and microscope, and then go through leakage test of gas. The proposed system alternates these heuristic techniques using support vector machines. Image procedures in the proposed method can cover the irregularity problem induced from human being. To get easy observation through microscope, 3D display system is also exploited. Experimental results from this automatic measurement show the welding detection is done within one tenth of permitted error range.

Signal processing method of bubble detection in sodium flow based on inverse Fourier transform to calculate energy ratio

  • Xu, Wei;Xu, Ke-Jun;Yu, Xin-Long;Huang, Ya;Wu, Wen-Kai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3122-3125
    • /
    • 2021
  • Electromagnetic vortex flowmeter is a new type of instrument for detecting leakage of steam generator, and the signal processing method based on the envelope to calculate energy ratio can effectively detect bubbles in sodium flow. The signal processing method is not affected by changes in the amplitude of the sensor output signal, which is caused by changes in magnetic field strength and other factors. However, the detection sensitivity of the electromagnetic vortex flowmeter is reduced. To this end, a signal processing method based on inverse Fourier transform to calculate energy ratio is proposed. According to the difference between the frequency band of the bubble noise signal and the flow signal, only the amplitude in the frequency band of the flow signal is retained in the frequency domain, and then the flow signal is obtained by the inverse Fourier transform method, thereby calculating the energy ratio. Using this method to process the experimental data, the results show that it can detect 0.1 g/s leak rate of water in the steam generator, and its performance is significantly better than that of the signal processing method based on the envelope to calculate energy ratio.

A scheme of leak detection model in a reservoir pipeline valve system using wavelet coherence analysis of injected pressure wave (주입 압력파의 웨이블릿 일관성 분석을 사용한 저수조-관로-밸브 시스템에서의 누수탐지모형 연구)

  • Ko, Dongwon;Lee, Jeongseop;Kim, Jinwon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.15-25
    • /
    • 2021
  • In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition (증속에 따른 누설자속기반 철도레일 결함탐상 기술 적용성 검토)

  • Kang, Donghoon;Oh, Ji-Taek;Kim, Ju-Won;Park, Seunghee
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.401-409
    • /
    • 2015
  • Defects generated in a railroad track that guides the railroad vehicle have the characteristic of growing fast; as such, the detection technology for railroad track defects is very important because defects can eventually cause mass disasters like derailments. In this study, a speed-up test facility was fabricated to investigate the feasibility of using magnetic flux leakage (MFL) technology for defect detection in a railroad track under speed-up condition; a test was conducted using a railroad track specimen with defects. For this purpose, an MFL sensor head dedicated to the configuration of the railroad was designed and test specimens with artificial defects on their surfaces were manufactured. Using the test facility, a speed-up test ranging from 4km/h to 12km/h was performed and defects including locations were successfully detected from MFL signals induced by defects with enhanced visibility by differentiating raw MFL signals. In the future, it should be possible to apply this system to a high-speed railroad inspection car by improving the lift-off stability that is necessary for speed-up of the developed MFL sensor system.

The X-ray Detection and morphology Characteristics on Evaporation Temperature of amorphous Selenium based digital X-ray detector (비정질 셀레늄의 박막 제조공정에 따른 미세구조와 IV특성)

  • Gong, H.G.;Cha, B.Y.;Lee, G.H.;Kim, J.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.51-54
    • /
    • 2002
  • Recently, due to its better photosensitivity in X-ray, the amorphous selenium based photoreceptor is used on digital direct method conversion material. Compared to other photoconductive material, amorphous selenium has good X-ray response characteristic and low leakage current. It has many parameters of detecting X-ray response on selenium. Among of them, it is well known that manufacture of a-Se is the most basic element. In this paper, we fabricated two types of amorphous selenium sample which had time variable. The one was fabricated continuous deposition sample and the other was step by step sample. Thickness of sample was $300{\mu}m$ and top electrode was evaporated gold. We investigated the leakage current and photo current of them and analysed their electrical characteristics. For analyzing morphology of samples, SEM and surface was pictured. We found that step by step deposition method could be applied for novel fabricating amorphous selenium film.

  • PDF