DOI QR코드

DOI QR Code

주입 압력파의 웨이블릿 일관성 분석을 사용한 저수조-관로-밸브 시스템에서의 누수탐지모형 연구

A scheme of leak detection model in a reservoir pipeline valve system using wavelet coherence analysis of injected pressure wave

  • 고동원 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 이정섭 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 김진원 (수자원기술주식회사) ;
  • 김상현 (부산대학교 공과대학 사회환경시스템공학과)
  • Ko, Dongwon (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Jeongseop (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Jinwon (Water Resources Engineering Corporation) ;
  • Kim, Sanghyun (Department of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2020.11.04
  • 심사 : 2020.12.14
  • 발행 : 2021.02.15

초록

In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.

키워드

과제정보

이 연구는 환경부 "글로벌탑 환경기술개발사업(20160021200015)"의 지원으로 수행되었으며 이에 감사드립니다.

참고문헌

  1. Brunone, B. (1999). Transient test-based technique for leak detection in out-fall pipes, J. Water Resour. Plan. Manag., 125(5), 302-306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302)
  2. Brunone, B. and Ferrante, M. (2001). Detecting leaks in pressurised pipes by means of transients, J. Hydraul. Res., 39(5), 539-548. https://doi.org/10.1080/00221686.2001.9628278
  3. Brunone, B., Ferrante, M. and Meniconi, S. (2008). Portable pressure wave-maker for leak detection and pipe system characterization, J. Am. Water Works Assoc., 100(4), 108-116. https://doi.org/10.1002/j.1551-8833.2008.tb09607.x
  4. Brunone, B., Meniconi, S. and Capponi, C. (2018). Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak, Urban Water J., 15(8), 760-768. https://doi.org/10.1080/1573062x.2018.1547772
  5. Chaudhry, M.H. (2014). Applied Hydraulic Transients. 3rd Ed., Van Nostrand Reinhold, New York.
  6. Covas, D.I.C., Ramos, H.M. and Betiamo de Almeida, A. (2000). "Leak location in pipe systems using pressure surges", 8th International Conference on Pressure Surges, 12-14 April, 2000, Hague, Netherlands, Mechanical Engineering Publications.
  7. Covas, D.I.C. and Ramos, H.M. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis, J. Water Resour. Plan. Manag., 136(2), 248-257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248)
  8. Ferrante, M. Brunone, B. and Meniconi, S. (2007). Wavelets for the analysis of transient pressure signals for leak detection, J. Hydraul. Res., 133(11), 1274-1282. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1274)
  9. Ferrante, M. Brunone, B. and Meniconi, S. (2009). Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model, J. Water Supply: Res. Technol. - AQUA, 58(2), 95-106. https://doi.org/10.2166/aqua.2009.022
  10. Gong, J., Lambert, M.F., Nguyen, S.T., Zecchin, A.C. and Simpson, A.R. (2017). Detecting thinner-walled pipe sections using a spark transient pressure wave generator, J. Hydraul. Eng., 144(2), 06017027. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001409
  11. Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks, J. Hydraul. Res., 41(5), 481-492. https://doi.org/10.1080/00221680309499993
  12. Kim, S.H. (2014). Inverse transient analysis for a branched pipeline system with leakage and blockage using impedance method, Procedia Eng., 89, 1350-1357. https://doi.org/10.1016/j.proeng.2014.11.456
  13. Liggett, J.A. and Chen, L.C. (1994). Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120(8), 934-955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)
  14. Meniconi, S., Brunone, B., Ferrante, M. and Massari, C. (2011). Small amplitude sharp pressure waves to diagnose pipe systems, Water Res., 25(1), 79-96.
  15. Nash, G.A. and Karney, B.W. (1999). Efficient inverse transient analysis in series pipe systems, J. Hydraul. Eng., 125(7), 761-764. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(761)
  16. Nixon, W., Ghidaoui, M.S. and Kolyshkin, A.A. (2006). Range of validity of the transient damping leakage detection method, J. Hydraul. Eng., 132(9), 944-957. https://doi.org/10.1061/(asce)0733-9429(2006)132:9(944)
  17. Rahmanshahi, M., Fathi-Moghadam, M. and Haghighi, A. (2018). Leak detection in viscoelastic pipeline using inverse transient analysis, J. Water Wastewater, 29(5), 85-97.
  18. Roesch, A. and Schmidbauer, H. (2018). WaveletComp: A guided tour through the R-package, http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf (August 24, 2020).
  19. Shamloo, H. and Haghighi, A. (2010). Optimum leak detection and calibration of pipe networks by inverse transient analysis, J. Hydraul. Res., 48(3), 371-386. https://doi.org/10.1080/00221681003726304
  20. Silva, R.A., Buiatti, C.M., Cruz, S.L. and Pereira, J.A.F.R. (1996). Pressure wave behaviour and leak detection in pipeline, Comput. Chem. Eng., 20, S491-S496. https://doi.org/10.1016/0098-1354(96)00091-9
  21. Soares, A.K., Covas, D.I.C. and Resi, L.F.R. (2011). Leak detection by inverse transient analysis in an experimental PVC pipe system, J. Hydroinformatics, 13(2), 153. https://doi.org/10.2166/hydro.2010.012
  22. Stephen, M.L., Lambert, M.F., Simpson, A.R., Vitkovsky, J.P. and Nixon, J.B. (2004). "Field tests for leakage, air pocket and discrete blockage detection using inverse transient analysis in water distribution pipes", 6th Annual Symposium on Water Distribution Systems Analysis, 27 June-1 July, 2004, Utah, USA, American Society of Civil Engineers.
  23. Streeter, V.L. and Wylie, E.B. (1993). Fluid Transients in Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.
  24. Taghvaei, M., Beck, S.B.M. and Boxall, J.B. (2010). Leak detection in pipes using induced water hammer pulses and cepstrum analysis, Int. J. COMADEM, 13(1), 19.
  25. Torrence, C. and Compo, G.P. (1998). A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79(1), 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  26. Vitkovsky, J.P., Simpson, A.R. and Lambert, M.F. (2000). Leak detection and calibration using transients and genetic algorithms, J. Water Resour. Plan. Manag., 126(4), 262-265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262)
  27. Vitkovsky, J.P., Liggett, J.A., Simpson, A.R. and Lambert, M.F. (2003). Optimal measurement location for inverse transients analysis in pipe networks, J. Water Resour. Plan. Manag., 129(6), 480-491. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(480)
  28. Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection, J. Water Resour. Plan. Manag., 133(6), 519-530. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519)
  29. Wang, X.J., Lambert, M.F., Simpson, A.R., Liggett, J.A. and Vitkovsky, J.P. (2002). Leak detection in pipelines using the damping of fluid transients, J. Hydraul. Eng., 128(7), 697-711. https://doi.org/10.1061/(asce)0733-9429(2002)128:7(697)